Is Parameter Learning via Weighted Model Integration Tractable?

Zhe Zeng* 1 Paolo Morettin* 2 Fanqi Yan 3 Antonio Vergari Andrea Passerini Guy Van den Broeck

WMI Problem

Formula

$$\Delta = (0 \le X_1) \land (X_1 \le 1)$$

 $\land (0 < X_2) \land (X_2 \le 1)$
 $\land (A \to (X_1 + X_2 \le 1))$

Weight

$$w_{\ell}(X_1, X_2) = X_1 + X_2$$

with $\ell = (X_1 + X_2 \le 1)$

Primal Graph

Compute WMI

 $\mathsf{WMI}(\Delta,\mathcal{W})$ $X_1 + X_2 dX_1 dX_2$ $X_1 + X_2 dX_1 dX_2$ $\int dX_1 dX_2 = 2 \cdot \frac{1}{3} + \frac{1}{2}$

Weighted Model Integration (WMI)

A framework for hybrid probabilistic inference with algebraic constraints [1].

$$\mathsf{WMI}(\Delta, w; \mathbf{X}, \mathbf{B}) \triangleq \sum_{\boldsymbol{b} \in \mathbb{B}^{|\mathbf{B}|}} \int_{\Delta(\boldsymbol{x}, \boldsymbol{b})} w(\boldsymbol{x}, \boldsymbol{b}) \, d\boldsymbol{x}$$

i.e. integration over the weighted statisfying assignments of a formula over hybrid variables

Algebraic constraints are Satisfiability Modulo Theories (SMT) formulas, as combinations of *Boolean* literals & *linear real arithmetic* (LRA) literals in Conjunctive Normal Form (CNF).

Primal graphs for SMT(LRA) formula: nodes ~ variables, edges ~ clauses.

Per-literal weights assign weight if the literal is SAT; otherwise assign one. Together they define a **joint weight**.

Answer queries

$$\mathsf{Pr}(q) = rac{\mathsf{WMI}(\Delta \wedge q, w; \mathbf{X}, \mathbf{B})}{\mathsf{WMI}(\Delta, w; \mathbf{X}, \mathbf{B})}$$

Contributions

- Provide theoretical insights on tractability of MLE-based parameter learning of WMI.
- Bridging two fields: Hinge-Loss Markov Random Fields (HL-MRFs) and WMI models, by reducing marginal inference of HL-MRFs to WMI inference.

Maximum Likelihood Estimation (MLE)

for WMI parameters

Optimization objective log-likelihood of dataset

$$\mathbf{\Theta}^* = \arg \max_{\mathbf{\Theta}} L(\mathbf{\Theta}) = \arg \max_{\mathbf{\Theta}} \log \prod_{\mathbf{x} \in \mathcal{D}} p(\mathbf{x}; \mathbf{\Theta})$$

Convexity?

Prop. The log-likelihood of dataset is *concave* if the weight functions are *log-linear* in their parameters.

=> This gives guarantees to convergence to the global optimum when using iterative methods, such as gradient ascent.

MLE

Tractability of computing gradients?

Partial derivatives of the log-likelihood with respect to a parameter in log-linear weight function:

$$\frac{\partial}{\partial \Theta_{\ell}^{k}} L(\mathbf{\Theta}) = \mathbb{E}_{\mathbf{x} \sim \mathcal{D}}[\llbracket \mathbf{x} \models \ell \rrbracket \cdot f_{\ell}^{k}(\mathbf{x})] - \mathbb{E}_{\mathbf{x} \sim p(\mathbf{X}; \mathbf{\Theta})} \left[\llbracket \mathbf{x} \models \ell \rrbracket \cdot f_{\ell}^{k}(\mathbf{x})\right]$$

Thm. The computation of the partial derivative is **tractable** if

i) WMI model is in the tractable WMI problem class [1]; ii) the feature functions are in function families that satisfies tractable weight conditions (TWCs),

where A family of weight functions satisfies *TWCs* iff:

- It is closed under *product*;
- It admits efficient computation of *antiderivatives*;
- It is closed under *definite integration*.

For example, (piecewise) polynomial, log-linear functions ...

=> This characterize which weight family allows tractable computation of the exact partial derivatives.

WMI & PSL

Marginal Inference For HL-MRFs via WMI

Probabilistic Soft Logic (PSL) is a statistical relational learning (SRL) framework for modeling probabilistic and relational domains, e.g.,

$$0.3 : friend(A, B) \land votesFor(B, P)$$

A PSL program induces a **Hinge-Loss Markov Random Field** (HL-MRF), which defines the distribution over interpretations

$$Pr(x_1, x_2) = \exp\{-0.3 \max\{x_1 + x_2 - 1, 0\}\}\$$

Thm. For any HL-MRF, there exists a WMI model with per-literal weights whose WMI density equals to the HL-MRF density.

For example, the WMI model that is equal to the HL-MRF shown above is

Formula
$$(x_1 + x_2 - 1 \ge 0) \lor True$$

Weight $w_{\ell}(x_1, x_2) = \exp\{-0.3(x_1 + x_2 - 1)\}$

=> This allows us to characterize the tractability of marginal inference for HL-MRFs via the analysis for WMI.

References

[1] Zhe Zeng, Paolo Morettin, Fanqi Yan, Antonio Vergari, and Guy Van den Broeck. Probabilistic inference with algebraic constraints: Theoretical limits and practical approximations. NeurIPS, 33, 2020.