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Where to integrate constraints?

Input  Latent Space  Output  Loss




Challenges in constraint integration

Non-differentiability Intractability

Discrete nature P-hard




How to integrate diverse constraints?

Non-differentiability Intractability

Discrete nature P-hard




How to integrate diverse constraints?

Outline

» Differentiable learning under constraints

e Constrained probabilistic inference



How to integrate diverse constraints?

Outline

» Differentiable learning under constraints



Why k-subset constraint?

Discrete VAE
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Exactly k one’s

Data Discrete Latent Space Reconstructed Data



Differentiable learning under k-subset constraints

Input Latent Space  Output Loss
Learn to Explain DiscreteVAE Al for Science Weakly Supervised
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Differentiable learning under k-subset constraints

Input Latent Space Output Loss

Learn to Explain DiscreteVAE Al for Science Weakly Supervised
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SIMPLE: Gradient Estimator for k-Subset Sampling ..

Encoder
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SIMPLE: Gradient Estimator for k-Subset Sampling ..

Encoder Discrete Latent Space
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SIMPLE: Gradient Estimator for k-Subset Sampling ..

Encoder Discrete Latent Space

hy
Logits z ~po(z| ) ;2 =k)
% @ 9
Thm. Exact sampling is easy!
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SIMPLE: Gradient Estimator for k-Subset Sampling ..

Encoder Discrete Latent Space Decoder

hy Ju
Logits z ~po(z| ) ;2 =k) Z
X@H T @ U(fu(z,Xx),y)
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SIMPLE: Gradient Estimator for k-Subset Sampling ..

Encoder Discrete Latent Space Decoder
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SIMPLE: Gradient Estimator for k-Subset Sampling ..

Encoder Discrete Latent Space Decoder
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SIMPLE: Gradient Estimator for k-Subset Sampling ..

Encoder Discrete Latent Space Decoder

fu
; I R
(& ((fu(z,%),¥)
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VHL X y Y W) — BOZ V K(fu(z X)vy

Intuition: update @ such that

Z1 <2 23 P(Zl ‘ ZZ 2 = k) P(ZQ ‘ ZZ Zi = k) p(zg ‘ Zz i = k)
1 1 0 0.7 0.8 0.2
v v v v

1 0 1 0.7 0.3 0.75
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SIMPLE: Gradient Estimator for k-Subset Sampling ..

Encoder Discrete Latent Space Decoder

fu
; I R
{e ((fulz,x),y)

/

VgL (X,yV;w) |~ Ogu(0)Vl(fu(z,%X),y)

Prop. can be obtained by

8% logpe(D_;zj = k) = (Z@ 2.7 = k) = 1(0)
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SIMPLE: Gradient Estimator for k-Subset Sampling ..

Encoder Discrete Latent Space Decoder

Ju
((fu(z,%),y)

marginal

We achieve lower bias and variance by exact, discrete samples and exact derivative of conditional marginals.
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B Variance
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Ablation Study

Why constraint probability helps?

Perturb-and-map (PAM)
= PAM Sampling
@ PAM Marginal

Exact computation by SIMPLE

=g Exact Sampling z ~py(z| > ;2 = k)
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Experiment

m) nnn — Decoder

Exactly k one’s

Data Discrete Latent Space Reconstructed Data

Metric: exact ELBO

Discrete 10-Subset VAE Discrete 1-Subset VAE
250 Gumbel Softmax
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Differentiable learning under k-subset constraints

Input Latent Space  Output Loss

Learn to Explain DiscreteVAE Al for Science Weakly Supervised
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Learn to Explain (L2X):;

Input: Output:
Key words (k = 10) Taste Score
a lite bodied beer with a 0.7

pleasant taste. was like a
reddish color. a little like
wood and caramel with a
hop finish. has a sort of
fruity flavor like grapes or
cherry that is sort of buried
in there. mouth feel was lite,
sort of bubbly. not hard to
down, though a bit harder
then one would expect given
the taste.




Learn to Explain (L2X)

Results for three aspects with k=10

pleasant taste. was like a
reddish color. a little like
wood and caramel with a
hop finish. has a sort of
fruity flavor like grapes or
cherry that is sort of buried
in there. mouth feel was lite,
sort of bubbly. not hard to
down, though a bit harder
then one would expect given
the taste.

Input: Output:
Key words (k = 10) Taste Score
a lite bodied beer with a 0.7

Appearance Palate Taste

Method

Test MISE Precision Test MSE Precision Test MSE Precision

SIMPLE (Ours) 235+028 6681 +756 2681006 4478+275 211+0.02 4231+ 0.61

L2X (t=0.1) 1070 £ 482 3002+ 1582 6.70+0.63 5039 +£1358 692+1.61 32231492
SoftSub (t=0.5) 248+0.10 5286+7.08 294+0.08 3917317 218+0.10 4198+142
IIMLE(7=30) 251+0.05 6547 +495 296+0.04 4073315 238+0.04 4138+1.55

Results for aspect Aroma, for kin {5, 10, 15}

Method k=25 k=10 k=15

Test MSE Precision Test MSE Precision Test MSE Precision

SIMPLE (Ours) 227 +0.05 57.30+3.04 223+0.03 47.17+211 3204004 5318+ 1.09
L2X (t=0.1) 575£030 3363+691 668+1.08 2665+939 771+064 2349+ 1093
SoftSub (t=0.5) 257+£0.12 5406 +6.29 2674014 44444227 252+0.07 3778+ 1.71

I'MLE (7=30) 262+£005 5476 +250 271+0.10 4798 +226 291+0.18 3956+ 2.07
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Differentiable learning under k-subset constraints

Input Latent Space  Output Loss

Learn to Explain DiscreteVAE Al for Science Weakly Supervised
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A Unified Approach to Count-Based Weakly-Supervised Learning:

y {m:}i) =3 yi/k {z:}i_) y = max{y;}
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?

Objective: To maximize the probability of weak supervisions, i.e., constraints on label counts
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Differentiable learning under k-subset constraints

Input Latent Space  Output Loss

Learn to Explain DiscreteVAE Al for Science Weakly Supervised
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Partial Charge Assignment to Metal-Organic Frameworks:

Application in Computational Chemistry

computation on whole graph
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Neutral Charge Constraint

)i @i =



Differentiable learning under k-subset constraints

Input Latent Space  Output Loss
Learn to Explain DiscreteVAE Al for Science Weakly Supervised
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How to integrate diverse constraints?

Outline

» Differentiable learning under constraints

» Key: constraint probabillity!



How to integrate diverse constraints?

Outline

* Constrained probabilistic inference



Collapsed inference for Bayesian deep learning

Constrained probabilistic inference



Motivation

Bad Uncertainty Estimation Risky Point Estimation
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= Bayesian Deep Learning for robust and reliable predictions
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Bayesian Model Average (BMA)

Key idea
Point Estimate Posterior
» /\
weights weights

p(y | z,w) p(y | x)=Jpy|z wplw)dw



Motivation

* Goal: Bayesian model average

Predictive posterior p(y | z) = [ p(y | =, w)p(w) dw

Expected prediction E[y| = [y p(y | ) dy

* Challenge: DNNs are too big!

= Costly to maintain too many samples

= | ow sample efficiency given theintegrand
How complex? &

35



How complex is the integrand?

Expected prediction E[y] = [y p(w | D) p(y | f(x),w) dw dy
' '

Weight posterior Predictive

1d Uniform 1d Gaussian

v
NN model
f(x) = ReLU(wx)

[0 Non-convex, multi-modal,
| o0 no closed form &
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Motivation

* Goal: Bayesian model average

Predictive posterior p(y | z) = [ p(y | z,w)p(w) dw

Expected prediction E[y| = [y p(y | ) dy

| 2 Is there a better way
| o to estimate the integral
than sampling?

Yes! &
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Idea
A reduction from BMA to WMI

 Weighted Model Integration (WMI);
* A class of weighted volume computation problems
e Definition:

» Region: () SMT formula (a logical combination of arithmetic constraints)

» Weight function ¢ : B — R

* Existing WMI solvers are able to give exact marginalization results

» for (piecewise) polynomial weights

38



Idea
A reduction from BMA to WMI

Sampling .
BMA - - BMA Integral
Approximated by Approximate
Y WMI solvers .
WMI - WMI integral

Ground truth BMA BMA by sampling BMA by WMI

39



X

Accurate approximation!
... but scalability?

40



Limitations

Sampling BMA via WMI
Accuracy X
Flexibility %"
Scalability %

* Limited to fully connected layers

** Integration over polytopes in arbitrarily high dimensions is #P-hard

How to combine good from both worlds? &

41



Limitations

Sampling BMA via WMI Collapsed Inference
Accuracy X
Flexibility V&
Scalability %

* Limited to fully connected layers

** Integration over polytopes in arbitrarily high dimensions is #P-hard

How to combine good from both worlds? &

= Collapsed inference scheme! | .

42




Collapsed Inferencers

All weights W

/M

Output Sample set Collapsed set

Input

! !

Convolution Pooling Fully connected

A 'A
Expected prediction in BMA  Ely] = >, WMI( ,/

“\.
-
.

Accuracy + Flexibility, Scalability! =
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Experiment: UCI Regression

BOSTON CONCRETE YACHT NAVAL ENERGY

CIBER (SECOND) -2.471+0.140 -2.975+0.102 -0.678 +0.301 7.276 +0.532 -0.716 + 0.211

CIBER (LAST)  -2.471+0.140 -2.959 + 0.109 -0.687 +0.301 7.482 +0.188 -0.716 = 0.211

SWAG 2761 +0.132  -3.013 + 0.086 -0.404 +0.418 6.708 =0.105 -1.679 = 1.488

PCA+ESS (SI)  -2.719+0.132 -3.007 + 0.086 -0.225 + 0.400 6.541 +0.095 -1.563 + 1.243

PCA+VI (SI) 2716 +0.133  -2.994 + 0.095 -0.396 + 0.419 6.708 =0.105 -1.715 = 1.588

SGD 2752 +0.132 3.178 £ 0.198 -0.418 £ 0.426 6.567 = 0.185 -1.736 = 1.613

DVI 2.410 +0.020 -3.060 + 0.010 -0.470 +0.030 6.290 = 0.040 -1.010 % 0.060

DGP 12330 + 0.060 -3.130 +0.030 -1.390 +0.140 3.600 = 0.330 -1.320 = 0.030

VI 12430 + 0.030 -3.040 + 0.020 -1.680 +0.040 5.870 +0.290 -2.380 = 0.020

MCD 12.400 + 0.040 -2.970 + 0.020 -1.380 +0.010 4.760 = 0.010 -1.720 =+ 0.010 :

VSD 2350 + 0.050 -2.970 +0.020 -1.140 +0.020 4.830 +0.010 -1.060 = 0.010 CI BER WlnS on 7/1 1 '

ELEVATORS KEGGD KEGGU PROTEIN SKILLCRAFT PoL

CIBER (SECOND) -0.378 + 0.026 1.245 + 0.090 1.125 = 0.269 -0.720 + 0.036 -1.003 = 0.035 2.555 - 0.115
CIBER (LAST)  -0.371+0.023 1.178 +0.088 0.964 + 0.231 -0.720 4+ 0.036 -1.001 % 0.032 2.506 + 0.150
SWAG -0.374 £ 0.021 1.080 = 0.035 0.749 + 0.029 -0.700 - 0.051 -1.180 = 0.033 1.533 + 1.084
PCA+ESS (SI)  -0.351+£0.030 1.074 +0.034 0.752+0.025 -0.734 +0.063 -1.181+0.033 -0.185 + 2.779
PCA+VI (SI) -0.325 + 0.019 1.085+0.031 0.757 +0.028 -0.712+0.057 -1.179+0.033 1.764 + 0.271
SGD 20.538 £ 0.108 1.012+0.154 0.602+ 0.224 -0.854 + 0.085 -1.162+0.032 1.073 + 0.858
ORTHVGP -0.448 1.022 0.701 -0.914 — 0.159
NL -0.698 + 0.039  0.935+0.265 0.670 + 0.038 -0.884 +0.025 -1.002 £ 0.050 -2.840 + 0.226
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Experiment: Image Classification

METRIC NLL ACC ECE

DATASET CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100
CIBER 0.1927 + 0.0029 0.9193 +0.0027 93.64+0.09 74.71 £0.18 0.0130+0.0011 0.0168 +=0.0025
SWAG 0.2503 £ 0.0081 1.2785 +0.0031 93.59+0.14 73.85+£0.25 0.0391 =0.0020 0.1535+0.0015
SGD 0.3285 +0.0139 1.7308 £0.0137 93.17+0.14 73.154+0.11 0.0483 +£0.0022 0.1870+0.0014
SWA 0.2621 =£0.0104 1.2780+£0.0051 93.61 £0.11 74.304+0.22 0.0408 £0.0019 0.1514 £0.0032
SGLD 0.2001 =£0.0059 0.9699 £ 0.0057 93.55+0.15 74.024+0.30 0.0082+0.0012 0.0424 +0.0029
KFAC 0.2252 +£0.0032 1.1915+£0.0199 92.65 +0.20 72.38+0.23 0.0094 +£0.0005 0.0778 £0.0054

* achieves accurate estimation of uncertainty
* applicable to large NNs
* boosts predictive performance
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How to integrate diverse constraints?

Outline

* Constrained probabilistic inference

» Key: constraint solvers + statistical ML!



Future Work

How to integrate diverse constraints?

» Differentiable learning under constraints  What more constraints are tractable?

o Key: constraint probability! How to deal with intractable ones? ...

» Constrained probabilistic inference What inference amenable to the reduction?

» Key: constraint solvers + statistical ML! How to deliver reliable & scalable inference? ...

Thanks!
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