Probabilistic Inference and Learning *under Constraints* Zhe Zeng University of California, Los Angeles #### Where are the constraints from? Properties Architecture Regularization Explainability Domain Knowledge Physical Laws Molecular Structure Gene Expression ## Where to integrate constraints? Latent Space Output Input Loss ## Challenges in constraint integration Non-differentiability Discrete nature Intractability #P-hard ### How to integrate diverse constraints? Non-differentiability Discrete nature Intractability #P-hard ## How to integrate *diverse constraints?*Outline - Differentiable learning under constraints - Constrained probabilistic inference ## How to integrate *diverse constraints?*Outline - Differentiable learning under constraints - Constrained probabilistic inference #### Why k-subset constraint? #### Discrete VAE #### Differentiable learning under k-subset constraints #### Differentiable learning under k-subset constraints #### Encoder Intuition: update θ such that Prop. conditional marginals can be obtained by $$\frac{\partial}{\partial \theta_i} \log p_{\theta}(\sum_j z_j = k) = p_{\theta} \left(z_i \mid \sum_j z_j = k \right) = \mu(\theta)$$ We achieve lower bias and variance by exact, discrete samples and exact derivative of conditional marginals. ### **Ablation Study** #### Why constraint probability helps? Perturb-and-map (PAM) **PAM Sampling** **PAM Marginal** Exact computation by SIMPLE Exact Sampling $\mathbf{z} \sim p_{\theta}(\mathbf{z} \mid \sum_{i} z_{i} = k)$ Exact Marginal $\mu(\boldsymbol{\theta}) = p_{\boldsymbol{\theta}} \Big(z_i \mid \sum_j z_j = k \Big)$ ## Experiment #### Metric: exact ELBO #### Differentiable learning under k-subset constraints ## Learn to Explain (L2X)[1] | Input: | Output: | | | |--------------------------------|-------------|--|--| | Key words $(k = 10)$ | Taste Score | | | | a lite bodied beer with a | 0.7 | | | | pleasant taste. was like a | | | | | reddish color. a little like | | | | | wood and caramel with a | | | | | hop finish. has a sort of | | | | | fruity flavor like grapes or | | | | | cherry that is sort of buried | | | | | in there. mouth feel was lite, | | | | | sort of bubbly. not hard to | | | | | down, though a bit harder | | | | | then one would expect given | | | | | the taste. | | | | ## Learn to Explain (L2X) | Input: | Output: | |---|-------------| | Key words ($k = 10$) | Taste Score | | a lite bodied beer with a | 0.7 | | <mark>pleasant taste</mark> . was like a | | | reddish color. a little like | | | wood and caramel with a | | | hop finish. has a sort of | | | fruity flavor like grapes or | | | cherry that is sort of buried | | | in there. mouth feel was lite, | | | sort of <mark>bubbly</mark> . not hard to | | | down, though a bit <mark>harder</mark> | | | then one would expect given | | | the taste. | | #### Results for three aspects with k = 10 | Method Appearance | | arance | Palate | | Taste | | |-----------------------|-----------------------------------|------------------------------------|-----------------------------------|-------------------------------------|-----------------------------------|------------------------------------| | | Test MSE | Precision | Test MSE | Precision | Test MSE | Precision | | SIMPLE (Ours) | $\textbf{2.35} \pm \textbf{0.28}$ | $\textbf{66.81} \pm \textbf{7.56}$ | $\textbf{2.68} \pm \textbf{0.06}$ | $\textbf{44.78} \pm \textbf{2.75}$ | $\textbf{2.11} \pm \textbf{0.02}$ | $\textbf{42.31} \pm \textbf{0.61}$ | | L2X (t = 0.1) | 10.70 ± 4.82 | 30.02 ± 15.82 | 6.70 ± 0.63 | $\textbf{50.39} \pm \textbf{13.58}$ | 6.92 ± 1.61 | 32.23 ± 4.92 | | SoftSub $(t = 0.5)$ | $\textbf{2.48} \pm \textbf{0.10}$ | 52.86 ± 7.08 | 2.94 ± 0.08 | 39.17 ± 3.17 | 2.18 ± 0.10 | $\textbf{41.98} \pm \textbf{1.42}$ | | I-MLE ($\tau = 30$) | $\textbf{2.51} \pm \textbf{0.05}$ | $\textbf{65.47} \pm \textbf{4.95}$ | 2.96 ± 0.04 | 40.73 ± 3.15 | 2.38 ± 0.04 | $\textbf{41.38} \pm \textbf{1.55}$ | #### Results for aspect Aroma, for k in {5, 10, 15} | Method $k = 5$ | | k = 10 | | k = 15 | | | |-----------------------|-----------------------------------|------------------------------------|-----------------------------------|------------------------------------|-----------------------------------|------------------------------------| | | Test MSE | Precision | Test MSE | Precision | Test MSE | Precision | | SIMPLE (Ours) | $\textbf{2.27} \pm \textbf{0.05}$ | $\textbf{57.30} \pm \textbf{3.04}$ | $\textbf{2.23} \pm \textbf{0.03}$ | $\textbf{47.17} \pm \textbf{2.11}$ | 3.20 ± 0.04 | $\textbf{53.18} \pm \textbf{1.09}$ | | L2X (t = 0.1) | 5.75 ± 0.30 | 33.63 ± 6.91 | 6.68 ± 1.08 | 26.65 ± 9.39 | 7.71 ± 0.64 | 23.49 ± 10.93 | | SoftSub $(t = 0.5)$ | 2.57 ± 0.12 | $\textbf{54.06} \pm \textbf{6.29}$ | 2.67 ± 0.14 | 44.44 ± 2.27 | $\textbf{2.52} \pm \textbf{0.07}$ | 37.78 ± 1.71 | | I-MLE ($\tau = 30$) | 2.62 ± 0.05 | $\textbf{54.76} \pm \textbf{2.50}$ | 2.71 ± 0.10 | $\textbf{47.98} \pm \textbf{2.26}$ | 2.91 ± 0.18 | 39.56 ± 2.07 | #### Differentiable learning under k-subset constraints #### A Unified Approach to Count-Based Weakly-Supervised Learning | $\{\boldsymbol{x}_i\}_{i=1}^k$ | $\tilde{y} = \max\{y_i\}$ | | |--------------------------------|---------------------------|--| | 0 | 0 | | | / 0 / | 1 | | | 0 | • | | | 0 1 | 1 | | Classical Learning from Label Proportions Multiple Instance Learning Learning from Positive & Unlabeled Objective: To maximize the probability of weak supervisions, i.e., constraints on label counts #### Differentiable learning under k-subset constraints ## Partial Charge Assignment to Metal–Organic Frameworks Application in Computational Chemistry #### computation on whole graph Neutral Charge Constraint $\sum_i \varphi_i = 0$ #### Differentiable learning under k-subset constraints Latent Space Output Input Loss DiscreteVAE Al for Science Weakly Supervised Learn to Explain Key: constraint probability! ## How to integrate *diverse constraints?*Outline - Differentiable learning under constraints - Key: constraint probability! - Constrained probabilistic inference ## How to integrate *diverse constraints?*Outline - Differentiable learning under constraints - Key: constraint probability! - Constrained probabilistic inference ### Collapsed inference for Bayesian deep learning Constrained probabilistic inference #### Motivation #### Bad Uncertainty Estimation Confidence by a ReLU neural network [6] #### Risky Point Estimation Loss surface [7] → Bayesian Deep Learning for *robust* and *reliable* predictions ## Bayesian Model Average (BMA) #### Key idea #### Motivation • Goal: Bayesian model average Predictive posterior $$p(y \mid x) = \int p(y \mid x, w)p(w) dw$$ Expected prediction $$\mathbb{E}[y] = \int y \ p(y \mid x) \ dy$$ - Challenge: DNNs are too big! - Costly to maintain too many samples - → Low sample efficiency given the complex integrand How complex? 🤪 ## How complex is the integrand? $\mathbb{E}[y] = \int y \ \underbrace{p(w \mid D)}_{\text{Weight posterior}} \ \underbrace{p(y \mid \underline{f(x)}, w)}_{\text{Predictive}} \ dw \ dy$ ## Non-convex, multi-modal, no closed form #### Motivation • Goal: Bayesian model average Predictive posterior $p(y \mid x) = \int p(y \mid x, w)p(w) dw$ Expected prediction $\mathbb{E}[y] = \int y \ p(y \mid x) \ dy$ Is there a better way to estimate the integral than sampling? #### Idea #### A reduction from BMA to WMI - Weighted Model Integration (WMI)[4] - A class of weighted volume computation problems - Definition: - Region: SMT formula (a logical combination of arithmetic constraints) - Weight function $\phi: \overline{\mathbb{D}} \to \mathbb{R}$ - Existing WMI solvers are able to give exact marginalization results - for (piecewise) polynomial weights ## Idea #### A reduction from BMA to WMI BMA by sampling BMA by WMI # Accurate approximation! ... but scalability? ### Limitations | | Sampling | BMA via WMI | |-------------|----------|-------------| | Accuracy | × | | | Flexibility | | * | | Scalability | | ** | ^{*} Limited to fully connected layers #### How to combine good from both worlds? 😌 ^{**} Integration over polytopes in arbitrarily high dimensions is #P-hard #### Limitations | | Sampling | BMA via WMI | Collapsed Inference | |-------------|----------|-------------|---------------------| | Accuracy | × | | | | Flexibility | | * | | | Scalability | | ** | | ^{*} Limited to fully connected layers #### How to combine good from both worlds? 🚱 ^{**} Integration over polytopes in arbitrarily high dimensions is #P-hard ## Collapsed Inference_[5] Expected prediction in BMA $$\mathbb{E}[y] = \frac{1}{n} \sum_{w_s} \mathsf{WMI}()$$ Accuracy + Flexibility, Scalability! ## **Experiment: UCI Regression** | | Boston | CONCRETE | Үаснт | NAVAL | ENERGY | |----------------|--------------------------------------|--------------------|-----------------------------|--|---| | CIBER (SECOND) | -2.471 ± 0.140 | -2.975 ± 0.102 | -0.678 ± 0.301 | 7.276 ± 0.532 | -0.716 ± 0.211 | | CIBER (LAST) | $\textbf{-2.471} \pm \textbf{0.140}$ | -2.959 ± 0.109 | -0.687 ± 0.301 | $\textcolor{red}{\textbf{7.482} \pm \textbf{0.188}}$ | $\textcolor{red}{\textbf{-0.716} \pm \textbf{0.211}}$ | | SWAG | -2.761 ± 0.132 | -3.013 ± 0.086 | -0.404 ± 0.418 | 6.708 ± 0.105 | -1.679 ± 1.488 | | PCA+ESS (SI) | -2.719 ± 0.132 | -3.007 ± 0.086 | -0.225 ± 0.400 | 6.541 ± 0.095 | -1.563 ± 1.243 | | PCA+VI (SI) | -2.716 ± 0.133 | -2.994 ± 0.095 | -0.396 ± 0.419 | 6.708 ± 0.105 | -1.715 ± 1.588 | | SGD | -2.752 ± 0.132 | -3.178 ± 0.198 | -0.418 ± 0.426 | 6.567 ± 0.185 | -1.736 ± 1.613 | | DVI | -2.410 ± 0.020 | -3.060 ± 0.010 | -0.470 ± 0.030 | 6.290 ± 0.040 | -1.010 ± 0.060 | | DGP | -2.330 ± 0.060 | -3.130 ± 0.030 | -1.390 ± 0.140 | 3.600 ± 0.330 | -1.320 ± 0.030 | | VI | -2.430 ± 0.030 | -3.040 ± 0.020 | -1.680 ± 0.040 | 5.870 ± 0.290 | -2.380 ± 0.020 | | MCD | -2.400 ± 0.040 | -2.970 ± 0.020 | -1.380 ± 0.010 | 4.760 ± 0.010 | -1.720 ± 0.010 | | VSD | $\textbf{-2.350} \pm 0.050$ | -2.970 ± 0.020 | $\textbf{-1.140} \pm 0.020$ | 4.830 ± 0.010 | -1.060 ± 0.010 | #### CIBER Wins on 7/11! | | ELEVATORS | KEGGD | KEGGU | PROTEIN | SKILLCRAFT | Pol | |----------------|--------------------|---|---|--------------------|--------------------|-------------------------------------| | CIBER (SECOND) | -0.378 ± 0.026 | $\underline{\textbf{1.245} \pm \textbf{0.090}}$ | $\underline{\textbf{1.125} \pm \textbf{0.269}}$ | -0.720 ± 0.036 | -1.003 ± 0.035 | $\textbf{2.555} \pm \textbf{0.115}$ | | CIBER (LAST) | -0.371 ± 0.023 | 1.178 ± 0.088 | 0.964 ± 0.231 | -0.720 ± 0.036 | -1.001 ± 0.032 | 2.506 ± 0.150 | | SWAG | -0.374 ± 0.021 | 1.080 ± 0.035 | 0.749 ± 0.029 | -0.700 ± 0.051 | -1.180 ± 0.033 | 1.533 ± 1.084 | | PCA+ESS (SI) | -0.351 ± 0.030 | 1.074 ± 0.034 | 0.752 ± 0.025 | -0.734 ± 0.063 | -1.181 ± 0.033 | -0.185 ± 2.779 | | PCA+VI (SI) | -0.325 ± 0.019 | 1.085 ± 0.031 | $\boldsymbol{0.757 \pm 0.028}$ | -0.712 ± 0.057 | -1.179 ± 0.033 | $\boldsymbol{1.764 \pm 0.271}$ | | SGD | -0.538 ± 0.108 | 1.012 ± 0.154 | 0.602 ± 0.224 | -0.854 ± 0.085 | -1.162 ± 0.032 | 1.073 ± 0.858 | | ORTHVGP | -0.448 | 1.022 | 0.701 | -0.914 | _ | 0.159 | | NL | -0.698 ± 0.039 | $\boldsymbol{0.935 \pm 0.265}$ | $\boldsymbol{0.670 \pm 0.038}$ | -0.884 ± 0.025 | -1.002 ± 0.050 | $\textbf{-2.840} \pm 0.226$ | ## **Experiment: Image Classification** | METRIC | NLL | | ACC | | ECE | | |---------|-------------------------|-------------------------|------------------------------------|------------------------------------|-------------------------|---------------------| | DATASET | CIFAR-10 | CIFAR-100 | CIFAR-10 | CIFAR-100 | CIFAR-10 | CIFAR-100 | | CIBER | $\bf 0.1927 \pm 0.0029$ | $\bf 0.9193 \pm 0.0027$ | $\textbf{93.64} \pm \textbf{0.09}$ | $\textbf{74.71} \pm \textbf{0.18}$ | 0.0130 ± 0.0011 | 0.0168 ± 0.0025 | | SWAG | 0.2503 ± 0.0081 | 1.2785 ± 0.0031 | 93.59 ± 0.14 | 73.85 ± 0.25 | 0.0391 ± 0.0020 | 0.1535 ± 0.0015 | | SGD | 0.3285 ± 0.0139 | 1.7308 ± 0.0137 | 93.17 ± 0.14 | 73.15 ± 0.11 | 0.0483 ± 0.0022 | 0.1870 ± 0.0014 | | SWA | 0.2621 ± 0.0104 | 1.2780 ± 0.0051 | 93.61 ± 0.11 | 74.30 ± 0.22 | 0.0408 ± 0.0019 | 0.1514 ± 0.0032 | | SGLD | 0.2001 ± 0.0059 | 0.9699 ± 0.0057 | 93.55 ± 0.15 | 74.02 ± 0.30 | $\bf 0.0082 \pm 0.0012$ | 0.0424 ± 0.0029 | | KFAC | 0.2252 ± 0.0032 | 1.1915 ± 0.0199 | 92.65 ± 0.20 | 72.38 ± 0.23 | 0.0094 ± 0.0005 | 0.0778 ± 0.0054 | - achieves accurate estimation of uncertainty - applicable to large NNs - boosts predictive performance # How to integrate *diverse constraints?*Outline - Differentiable learning under constraints - Key: constraint probability! - Constrained probabilistic inference - Key: constraint solvers + statistical ML! #### **Future Work** #### How to integrate diverse constraints? - Differentiable learning under constraints - Key: constraint probability! - Constrained probabilistic inference - Key: constraint solvers + statistical ML! How to deliver reliable & scalable inference? ... What more constraints are tractable? How to deal with intractable ones? ... What inference amenable to the reduction? #### Thanks! #### References - [1] Kareem Ahmed*, Zhe Zeng*, Mathias Niepert, and Guy Van den Broeck. SIMPLE: A gradient estimator for k-subset sampling, ICLR, 2023. - [2] Vinay Shukla, Zhe Zeng*, Kareem Ahmed*, and Guy Van den Broeck. A unified approach to count-based weakly-supervised learning. In ICML 2023 Workshop on Differentiable Almost Everything, 2023. - [3] Raza, Ali, et al. "Message passing neural networks for partial charge assignment to metal-organic frameworks." *The Journal of Physical Chemistry C* 124.35 (2020): 19070-19082. - [4] V. Belle, A. Passerini, and G. Van den Broeck. Probabilistic inference in hybrid domains by weighted model integration. In Proceedings of 24th International Joint Conference on Artificial Intelligence (IJCAI), pages 2770–2776, 2015. - [5] Zhe Zeng and Guy Van den Broeck. Collapsed inference for Bayesian deep learning. In ICML 2023 Workshop on Structured Probabilistic Inference & Generative Modeling, 2023. - [6] Kristiadi, Agustinus, Matthias Hein, and Philipp Hennig. "Being bayesian, even just a bit, fixes overconfidence in relu networks." *International conference on machine learning*. PMLR, 2020. - [7] Garipov, Timur, et al. "Loss surfaces, mode connectivity, and fast ensembling of dnns." *Advances in neural information processing systems* 31 (2018).