Probabilistic Inference and Learning *under Constraints*

Zhe Zeng University of California, Los Angeles

Where are the constraints from?

Properties

Architecture

Regularization

Explainability

Domain Knowledge

Physical Laws

Molecular Structure

Gene Expression

Where to integrate constraints?

Latent Space Output Input Loss

Challenges in constraint integration

Non-differentiability

Discrete nature

Intractability #P-hard

How to integrate diverse constraints?

Non-differentiability

Discrete nature

Intractability #P-hard

How to integrate *diverse constraints?*Outline

- Differentiable learning under constraints
- Constrained probabilistic inference

How to integrate *diverse constraints?*Outline

- Differentiable learning under constraints
- Constrained probabilistic inference

Why k-subset constraint?

Discrete VAE

Differentiable learning under k-subset constraints

Differentiable learning under k-subset constraints

Encoder

Intuition: update θ such that

Prop. conditional marginals can be obtained by

$$\frac{\partial}{\partial \theta_i} \log p_{\theta}(\sum_j z_j = k) = p_{\theta} \left(z_i \mid \sum_j z_j = k \right) = \mu(\theta)$$

We achieve lower bias and variance by exact, discrete samples and exact derivative of conditional marginals.

Ablation Study

Why constraint probability helps?

Perturb-and-map (PAM)

PAM Sampling

PAM Marginal

Exact computation by SIMPLE

Exact Sampling $\mathbf{z} \sim p_{\theta}(\mathbf{z} \mid \sum_{i} z_{i} = k)$

Exact Marginal $\mu(\boldsymbol{\theta}) = p_{\boldsymbol{\theta}} \Big(z_i \mid \sum_j z_j = k \Big)$

Experiment

Metric: exact ELBO

Differentiable learning under k-subset constraints

Learn to Explain (L2X)[1]

Input:	Output:		
Key words $(k = 10)$	Taste Score		
a lite bodied beer with a	0.7		
pleasant taste. was like a			
reddish color. a little like			
wood and caramel with a			
hop finish. has a sort of			
fruity flavor like grapes or			
cherry that is sort of buried			
in there. mouth feel was lite,			
sort of bubbly. not hard to			
down, though a bit harder			
then one would expect given			
the taste.			

Learn to Explain (L2X)

Input:	Output:
Key words ($k = 10$)	Taste Score
a lite bodied beer with a	0.7
<mark>pleasant taste</mark> . was like a	
reddish color. a little like	
wood and caramel with a	
hop finish. has a sort of	
fruity flavor like grapes or	
cherry that is sort of buried	
in there. mouth feel was lite,	
sort of <mark>bubbly</mark> . not hard to	
down, though a bit <mark>harder</mark>	
then one would expect given	
the taste.	

Results for three aspects with k = 10

Method Appearance		arance	Palate		Taste	
	Test MSE	Precision	Test MSE	Precision	Test MSE	Precision
SIMPLE (Ours)	$\textbf{2.35} \pm \textbf{0.28}$	$\textbf{66.81} \pm \textbf{7.56}$	$\textbf{2.68} \pm \textbf{0.06}$	$\textbf{44.78} \pm \textbf{2.75}$	$\textbf{2.11} \pm \textbf{0.02}$	$\textbf{42.31} \pm \textbf{0.61}$
L2X (t = 0.1)	10.70 ± 4.82	30.02 ± 15.82	6.70 ± 0.63	$\textbf{50.39} \pm \textbf{13.58}$	6.92 ± 1.61	32.23 ± 4.92
SoftSub $(t = 0.5)$	$\textbf{2.48} \pm \textbf{0.10}$	52.86 ± 7.08	2.94 ± 0.08	39.17 ± 3.17	2.18 ± 0.10	$\textbf{41.98} \pm \textbf{1.42}$
I-MLE ($\tau = 30$)	$\textbf{2.51} \pm \textbf{0.05}$	$\textbf{65.47} \pm \textbf{4.95}$	2.96 ± 0.04	40.73 ± 3.15	2.38 ± 0.04	$\textbf{41.38} \pm \textbf{1.55}$

Results for aspect Aroma, for k in {5, 10, 15}

Method $k = 5$		k = 10		k = 15		
	Test MSE	Precision	Test MSE	Precision	Test MSE	Precision
SIMPLE (Ours)	$\textbf{2.27} \pm \textbf{0.05}$	$\textbf{57.30} \pm \textbf{3.04}$	$\textbf{2.23} \pm \textbf{0.03}$	$\textbf{47.17} \pm \textbf{2.11}$	3.20 ± 0.04	$\textbf{53.18} \pm \textbf{1.09}$
L2X (t = 0.1)	5.75 ± 0.30	33.63 ± 6.91	6.68 ± 1.08	26.65 ± 9.39	7.71 ± 0.64	23.49 ± 10.93
SoftSub $(t = 0.5)$	2.57 ± 0.12	$\textbf{54.06} \pm \textbf{6.29}$	2.67 ± 0.14	44.44 ± 2.27	$\textbf{2.52} \pm \textbf{0.07}$	37.78 ± 1.71
I-MLE ($\tau = 30$)	2.62 ± 0.05	$\textbf{54.76} \pm \textbf{2.50}$	2.71 ± 0.10	$\textbf{47.98} \pm \textbf{2.26}$	2.91 ± 0.18	39.56 ± 2.07

Differentiable learning under k-subset constraints

A Unified Approach to Count-Based Weakly-Supervised Learning

$\{\boldsymbol{x}_i\}_{i=1}^k$	$\tilde{y} = \max\{y_i\}$	
0	0	
/ 0 /	1	
0	•	
0 1	1	

Classical

Learning from Label Proportions

Multiple Instance Learning

Learning from Positive & Unlabeled

Objective: To maximize the probability of weak supervisions, i.e., constraints on label counts

Differentiable learning under k-subset constraints

Partial Charge Assignment to Metal–Organic Frameworks Application in Computational Chemistry

computation on whole graph

Neutral Charge Constraint $\sum_i \varphi_i = 0$

Differentiable learning under k-subset constraints

Latent Space Output Input Loss DiscreteVAE Al for Science Weakly Supervised Learn to Explain Key: constraint probability!

How to integrate *diverse constraints?*Outline

- Differentiable learning under constraints
 - Key: constraint probability!
- Constrained probabilistic inference

How to integrate *diverse constraints?*Outline

- Differentiable learning under constraints
 - Key: constraint probability!
- Constrained probabilistic inference

Collapsed inference for Bayesian deep learning

Constrained probabilistic inference

Motivation

Bad Uncertainty Estimation

Confidence by a ReLU neural network [6]

Risky Point Estimation

Loss surface [7]

→ Bayesian Deep Learning for *robust* and *reliable* predictions

Bayesian Model Average (BMA)

Key idea

Motivation

• Goal: Bayesian model average

Predictive posterior
$$p(y \mid x) = \int p(y \mid x, w)p(w) dw$$

Expected prediction
$$\mathbb{E}[y] = \int y \ p(y \mid x) \ dy$$

- Challenge: DNNs are too big!
 - Costly to maintain too many samples
 - → Low sample efficiency given the complex integrand

How complex? 🤪

How complex is the integrand?

 $\mathbb{E}[y] = \int y \ \underbrace{p(w \mid D)}_{\text{Weight posterior}} \ \underbrace{p(y \mid \underline{f(x)}, w)}_{\text{Predictive}} \ dw \ dy$

Non-convex, multi-modal, no closed form

Motivation

• Goal: Bayesian model average

Predictive posterior $p(y \mid x) = \int p(y \mid x, w)p(w) dw$

Expected prediction $\mathbb{E}[y] = \int y \ p(y \mid x) \ dy$

Is there a better way to estimate the integral than sampling?

Idea

A reduction from BMA to WMI

- Weighted Model Integration (WMI)[4]
 - A class of weighted volume computation problems
 - Definition:
 - Region: SMT formula (a logical combination of arithmetic constraints)
 - Weight function $\phi: \overline{\mathbb{D}} \to \mathbb{R}$
 - Existing WMI solvers are able to give exact marginalization results
 - for (piecewise) polynomial weights

Idea

A reduction from BMA to WMI

BMA by sampling

BMA by WMI

Accurate approximation!

... but scalability?

Limitations

	Sampling	BMA via WMI
Accuracy	×	
Flexibility		*
Scalability		**

^{*} Limited to fully connected layers

How to combine good from both worlds? 😌

^{**} Integration over polytopes in arbitrarily high dimensions is #P-hard

Limitations

	Sampling	BMA via WMI	Collapsed Inference
Accuracy	×		
Flexibility		*	
Scalability		**	

^{*} Limited to fully connected layers

How to combine good from both worlds? 🚱

^{**} Integration over polytopes in arbitrarily high dimensions is #P-hard

Collapsed Inference_[5]

Expected prediction in BMA

$$\mathbb{E}[y] = \frac{1}{n} \sum_{w_s} \mathsf{WMI}()$$

Accuracy + Flexibility, Scalability!

Experiment: UCI Regression

	Boston	CONCRETE	Үаснт	NAVAL	ENERGY
CIBER (SECOND)	-2.471 ± 0.140	-2.975 ± 0.102	-0.678 ± 0.301	7.276 ± 0.532	-0.716 ± 0.211
CIBER (LAST)	$\textbf{-2.471} \pm \textbf{0.140}$	-2.959 ± 0.109	-0.687 ± 0.301	$\textcolor{red}{\textbf{7.482} \pm \textbf{0.188}}$	$\textcolor{red}{\textbf{-0.716} \pm \textbf{0.211}}$
SWAG	-2.761 ± 0.132	-3.013 ± 0.086	-0.404 ± 0.418	6.708 ± 0.105	-1.679 ± 1.488
PCA+ESS (SI)	-2.719 ± 0.132	-3.007 ± 0.086	-0.225 ± 0.400	6.541 ± 0.095	-1.563 ± 1.243
PCA+VI (SI)	-2.716 ± 0.133	-2.994 ± 0.095	-0.396 ± 0.419	6.708 ± 0.105	-1.715 ± 1.588
SGD	-2.752 ± 0.132	-3.178 ± 0.198	-0.418 ± 0.426	6.567 ± 0.185	-1.736 ± 1.613
DVI	-2.410 ± 0.020	-3.060 ± 0.010	-0.470 ± 0.030	6.290 ± 0.040	-1.010 ± 0.060
DGP	-2.330 ± 0.060	-3.130 ± 0.030	-1.390 ± 0.140	3.600 ± 0.330	-1.320 ± 0.030
VI	-2.430 ± 0.030	-3.040 ± 0.020	-1.680 ± 0.040	5.870 ± 0.290	-2.380 ± 0.020
MCD	-2.400 ± 0.040	-2.970 ± 0.020	-1.380 ± 0.010	4.760 ± 0.010	-1.720 ± 0.010
VSD	$\textbf{-2.350} \pm 0.050$	-2.970 ± 0.020	$\textbf{-1.140} \pm 0.020$	4.830 ± 0.010	-1.060 ± 0.010

CIBER Wins on 7/11!

	ELEVATORS	KEGGD	KEGGU	PROTEIN	SKILLCRAFT	Pol
CIBER (SECOND)	-0.378 ± 0.026	$\underline{\textbf{1.245} \pm \textbf{0.090}}$	$\underline{\textbf{1.125} \pm \textbf{0.269}}$	-0.720 ± 0.036	-1.003 ± 0.035	$\textbf{2.555} \pm \textbf{0.115}$
CIBER (LAST)	-0.371 ± 0.023	1.178 ± 0.088	0.964 ± 0.231	-0.720 ± 0.036	-1.001 ± 0.032	2.506 ± 0.150
SWAG	-0.374 ± 0.021	1.080 ± 0.035	0.749 ± 0.029	-0.700 ± 0.051	-1.180 ± 0.033	1.533 ± 1.084
PCA+ESS (SI)	-0.351 ± 0.030	1.074 ± 0.034	0.752 ± 0.025	-0.734 ± 0.063	-1.181 ± 0.033	-0.185 ± 2.779
PCA+VI (SI)	-0.325 ± 0.019	1.085 ± 0.031	$\boldsymbol{0.757 \pm 0.028}$	-0.712 ± 0.057	-1.179 ± 0.033	$\boldsymbol{1.764 \pm 0.271}$
SGD	-0.538 ± 0.108	1.012 ± 0.154	0.602 ± 0.224	-0.854 ± 0.085	-1.162 ± 0.032	1.073 ± 0.858
ORTHVGP	-0.448	1.022	0.701	-0.914	_	0.159
NL	-0.698 ± 0.039	$\boldsymbol{0.935 \pm 0.265}$	$\boldsymbol{0.670 \pm 0.038}$	-0.884 ± 0.025	-1.002 ± 0.050	$\textbf{-2.840} \pm 0.226$

Experiment: Image Classification

METRIC	NLL		ACC		ECE	
DATASET	CIFAR-10	CIFAR-100	CIFAR-10	CIFAR-100	CIFAR-10	CIFAR-100
CIBER	$\bf 0.1927 \pm 0.0029$	$\bf 0.9193 \pm 0.0027$	$\textbf{93.64} \pm \textbf{0.09}$	$\textbf{74.71} \pm \textbf{0.18}$	0.0130 ± 0.0011	0.0168 ± 0.0025
SWAG	0.2503 ± 0.0081	1.2785 ± 0.0031	93.59 ± 0.14	73.85 ± 0.25	0.0391 ± 0.0020	0.1535 ± 0.0015
SGD	0.3285 ± 0.0139	1.7308 ± 0.0137	93.17 ± 0.14	73.15 ± 0.11	0.0483 ± 0.0022	0.1870 ± 0.0014
SWA	0.2621 ± 0.0104	1.2780 ± 0.0051	93.61 ± 0.11	74.30 ± 0.22	0.0408 ± 0.0019	0.1514 ± 0.0032
SGLD	0.2001 ± 0.0059	0.9699 ± 0.0057	93.55 ± 0.15	74.02 ± 0.30	$\bf 0.0082 \pm 0.0012$	0.0424 ± 0.0029
KFAC	0.2252 ± 0.0032	1.1915 ± 0.0199	92.65 ± 0.20	72.38 ± 0.23	0.0094 ± 0.0005	0.0778 ± 0.0054

- achieves accurate estimation of uncertainty
- applicable to large NNs
- boosts predictive performance

How to integrate *diverse constraints?*Outline

- Differentiable learning under constraints
 - Key: constraint probability!
- Constrained probabilistic inference
 - Key: constraint solvers + statistical ML!

Future Work

How to integrate diverse constraints?

- Differentiable learning under constraints
 - Key: constraint probability!
- Constrained probabilistic inference
 - Key: constraint solvers + statistical ML! How to deliver reliable & scalable inference? ...

What more constraints are tractable?

How to deal with intractable ones? ...

What inference amenable to the reduction?

Thanks!

References

- [1] Kareem Ahmed*, Zhe Zeng*, Mathias Niepert, and Guy Van den Broeck. SIMPLE: A gradient estimator for k-subset sampling, ICLR, 2023.
- [2] Vinay Shukla, Zhe Zeng*, Kareem Ahmed*, and Guy Van den Broeck. A unified approach to count-based weakly-supervised learning. In ICML 2023 Workshop on Differentiable Almost Everything, 2023.
- [3] Raza, Ali, et al. "Message passing neural networks for partial charge assignment to metal-organic frameworks." *The Journal of Physical Chemistry C* 124.35 (2020): 19070-19082.
- [4] V. Belle, A. Passerini, and G. Van den Broeck. Probabilistic inference in hybrid domains by weighted model integration. In Proceedings of 24th International Joint Conference on Artificial Intelligence (IJCAI), pages 2770–2776, 2015.
- [5] Zhe Zeng and Guy Van den Broeck. Collapsed inference for Bayesian deep learning. In ICML 2023 Workshop on Structured Probabilistic Inference & Generative Modeling, 2023.
- [6] Kristiadi, Agustinus, Matthias Hein, and Philipp Hennig. "Being bayesian, even just a bit, fixes overconfidence in relu networks." *International conference on machine learning*. PMLR, 2020.
- [7] Garipov, Timur, et al. "Loss surfaces, mode connectivity, and fast ensembling of dnns." *Advances in neural information processing systems* 31 (2018).