
Tractable Computation
of Expected Kernels
by Circuits

Wenzhe Li∗
Tsinghua University

Zhe Zeng∗
University of California, Los Angeles

Antonio Vergari
University of California, Los Angeles

Guy Van den Broeck
University of California, Los Angeles

April 21st, 2021 - DCE Reading Group



Tractable Computation
of Expected Kernels
by Circuits

Wenzhe Li∗
Tsinghua University

Zhe Zeng∗
University of California, Los Angeles

Antonio Vergari
University of California, Los Angeles

Guy Van den Broeck
University of California, Los Angeles

April 21st, 2021 - DCE Reading Group



Tractable Computation
of Expected Kernels
by Circuits

Wenzhe Li∗
Tsinghua University

Zhe Zeng∗
University of California, Los Angeles

Antonio Vergari
University of California, Los Angeles

Guy Van den Broeck
University of California, Los Angeles

April 21st, 2021 - DCE Reading Group



Tractable Computation
of Expected Kernels
by Circuits

Wenzhe Li∗
Tsinghua University

Zhe Zeng∗
University of California, Los Angeles

Antonio Vergari
University of California, Los Angeles

Guy Van den Broeck
University of California, Los Angeles

April 21st, 2021 - DCE Reading Group
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the expected kernel

Ex�p;x0�q[k(x; x0)]
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A Fundamental Task

Given two distributions p and q, and a kernel k, the task is to compute
the expected kernel

Ex�p;x0�q[k(x; x0)]

) In kernel-based frameworks, expected kernels are omnipresent!

squared Maximum Mean Discrepancy (MMD)
Ex�p;x0�p[k(x; x0)] + Ex�q;x0�q[k(x; x0)] � 2Ex�p;x0�q[k(x; x0)]
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Motivation
A Fundamental Task

Given two distributions p and q, and a kernel k, the task is to compute
the expected kernel

Ex�p;x0�q[k(x; x0)]

) In kernel-based frameworks, expected kernels are omnipresent!

Discrete Kernelized Stein Discrepancy (KDSD)
Ex;x0�q[kp(x; x0)]
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Challenge
Reliability vs. Flexibility

Ex�p;x0�q[k(x; x0)] =

Z
x;x0

p(x)q(x0)k(x; x0) dx dx0
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Challenge
Reliability vs. Flexibility

Ex�p;x0�q[k(x; x0)] =

Z
x;x0

p(x)q(x0)k(x; x0) dx dx0

p; q; k fully factorized
p(x) =

Q
i p(xi), q(x) =

Q
i q(xi)

k(x; x0) =
Q

i k(xi; x0
i)

) expected kernel is tractableQ
i(

R
xi;x′

i
p(xi)q(x0

i)k(xi; x0
i))
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Z
x;x0

p(x)q(x0)k(x; x0) dx dx0

p; q; k fully factorized

PRO. Tractable exact computation
CON.Model being too restrictive

trade-off? Hard to compute in general.) approximate with MC
or variational inference

PRO. Efficient computation
CON. no guarantees on error bounds
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Expressive distribution models
+

Exact computation of expected kernels?
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Expressive distribution models
+

Exact computation of expectated kernels
=

Circuits!
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Circuits

Probabilistic Circuits
deep generative models + deep guarantees
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Probabilistic Circuits
deep generative models + deep guarantees

Kernel Circuits
express kernels as circuits

) Ex�p;x0�q[k(x; x0)]
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Probabilistic Circuits (PCs)
Tractable computational graphs

10/36

I. A simple tractable distribution is a PC

) e.g., a multivariate Gaussian



Probabilistic Circuits (PCs)
Tractable computational graphs

10/36

I. A simple tractable distribution is a PC

II. A convex combination of PCs is a PC

) e.g., a mixture model



Probabilistic Circuits (PCs)
Tractable computational graphs

10/36

I. A simple tractable distribution is a PC

II. A convex combination of PCs is a PC

III. A product of PCs is a PC



Probabilistic Circuits (PCs)
Tractable computational graphs

10/36



Probabilistic Circuits (PCs)
Tractable computational graphs
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Probabilistic queries = feedforward evaluation

p(X1 = �1:85; X2 = 0:5; X3 = �1:3; X4 = 0:2)
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Probabilistic queries = feedforward evaluation

p(X1 = �1:85; X2 = 0:5; X3 = �1:3; X4 = 0:2) = 0:75
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PCs = deep learning

PCs are computational graphs
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PCs = deep learning

PCs are computational graphs encoding deep mixture models
) stacking (categorical) latent variables

PCs compactly represent polynomials with exponentially many terms
) universal approximators

PCs are expressive deep generative models!
) we can learn PCs with millions of parameters in minutes on the GPU [Peharz

et al. 2020]
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On par with intractable models!
How expressive are PCs?

dataset best circuit BN MADE VAE dataset best circuit BN MADE VAE

nltcs -5.99 -6.02 -6.04 -5.99 dna -79.88 -80.65 -82.77 -94.56
msnbc -6.04 -6.04 -6.06 -6.09 kosarek -10.52 -10.83 - -10.64
kdd -2.12 -2.19 -2.07 -2.12 msweb -9.62 -9.70 -9.59 -9.73
plants -11.84 -12.65 -12.32 -12.34 book -33.82 -36.41 -33.95 -33.19
audio -39.39 -40.50 -38.95 -38.67 movie -50.34 -54.37 -48.7 -47.43
jester -51.29 -51.07 -52.23 -51.54 webkb -149.20 -157.43 -149.59 -146.9
netflix -55.71 -57.02 -55.16 -54.73 cr52 -81.87 -87.56 -82.80 -81.33
accidents -26.89 -26.32 -26.42 -29.11 c20ng -151.02 -158.95 -153.18 -146.9
retail -10.72 -10.87 -10.81 -10.83 bbc -229.21 -257.86 -242.40 -240.94
pumbs* -22.15 -21.72 -22.3 -25.16 ad -14.00 -18.35 -13.65 -18.81

Peharz et al., “Random sum-product networks: A simple but effective approach to probabilistic
deep learning”, 2019 13/36



Unifying existing tractable models

Chow-Liu trees
[Chow and Liu 1968]

Junction trees
[Bach and Jordan 2001]

HMMs
[Rabiner and Juang 1986]

Classical tractable models can be compactly represented as PCs

Dang et al., “Strudel: Learning Structured-Decomposable Probabilistic Circuits”, 2020 14/36



Chow-Liu trees
[Chow and Liu 1968]

Junction trees
[Bach and Jordan 2001]

HMMs
[Rabiner and Juang 1986]
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PCs = deep learning + deep guarantees

PCs are expressive deep generative models!

&

Certifying tractability for a class of queries

=
verifying structural properties of the graph

16/36



Which structural constraints
ensure tractability?
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decomposable + smooth PCs

A PC is decomposable if all inputs of product units depend on disjoint sets of variables

decomposable circuit

Darwiche and Marquis, “A knowledge compilation map”, 2002 18/36



decomposable + smooth PCs

A PC is decomposable if all inputs of product units depend on disjoint sets of variables
A PC is smooth if all inputs of sum units depend of the same variable sets

decomposable circuit

X1 X1

w1 w2

smooth circuit

Darwiche and Marquis, “A knowledge compilation map”, 2002 18/36



decomposable + smooth PCs = Ɏ

Choi et al., “Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Modeling”,
2020 19/36



decomposable + smooth PCs = Ɏ

MAR sufficient and necessary conditions for computing any marginal

p(y) =

Z
val(Z)

p(z; y) dZ; 8Y � X; Z = X n Y

) by a single feedforward evaluation

Choi et al., “Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Modeling”,
2020 19/36



decomposable + smooth PCs = Ɏ

MAR sufficient and necessary conditions for computing any marginal
R

p(z; y) dZ

CON sufficient and necessary conditions for any conditional distribution

p(y j z) =

R
val(H)

p(z; y; h) dHR
val(H)

R
val(Y)

p(z; y; h) dH dY
; 8Z; Y � X

) by two feedforward evaluations

Choi et al., “Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Modeling”,
2020 19/36



decomposable + smooth PCs = Ɏ

MAR sufficient and necessary conditions for computing any marginal
R

p(z; y) dZ

CON sufficient and necessary conditions for any conditional
R

p(z;y;h) dHR R
p(z;y;h) dH dY

? What about the expected kernel Ex�p;x0�q[k(x; x0)]?

Choi et al., “Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Modeling”,
2020 19/36



Can we represent kernels as circuits
to characterize tractability of its queries?

20/36



Kernel Circuits (KCs)

Exa. Radial basis function (RBF) kernel k(x; x0) = exp (�
P4

i=1 j Xi � X 0
i j2)

exp(�jX1 �X 0
1j2)

exp(�jX2 �X 0
2j2)

� �

exp(�jX3 �X 0
3j2)

�

exp(�jX4 �X 0
4j2)

1 1 1
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� �

exp(�jX3 �X 0
3j2)

�

exp(�jX4 �X 0
4j2)

1 1 1

decomposable if all inputs of product units depend on disjoint sets of variables

smooth if all inputs of sum units depend of the same variable sets
21/36



Kernel Circuits (KCs)

Common kernels can be compactly represented as
decomposable + smooth KCs:

RBF, (exponentiated) Hamming, polynomial ...

22/36



Expected Kernel
tractable computation via circuit operations

i) PCs p and q, and KC k are decomposable + smooth
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Expected Kernel
tractable computation via circuit operations

i) PCs p and q, and KC k are decomposable + smooth

ii) PCs p and q, and KC k are compatible

) decompose in the same way
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ii) PCs p and q, and KC k are compatible

fX1gfX2g

fX′
1gfX′
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f(X1; X′
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tractable computation via circuit operations

i) PCs p and q, and KC k are decomposable + smooth

ii) PCs p and q, and KC k are compatible
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Expected Kernel
tractable computation via circuit operations

i) PCs p and q, and KC k are decomposable + smooth

ii) PCs p and q, and KC k are compatible

Then computing expected kernels can be done tractably by a forward pass
) product of the sizes of each circuit!

25/36



smooth + decomposable + compatible = tractable E[k]

[Sum Nodes] p(X) =
P

i wipi(X), q(X′) =
P

j w′
jqj(X′), and kernel k(X; X′) =

P
l w

00
l kl(X; X′):
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j w′
jqj(X′), and kernel k(X; X′) =

P
l w

00
l kl(X; X′):

P
x;x′ p(x)q(x0)k(x; x0)

=
P

i;j;l wiw
0
jw

′′
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smooth + decomposable + compatible = tractable E[k]

[Sum Nodes] p(X) =
P

i wipi(X), q(X′) =
P

j w′
jqj(X′), and kernel k(X; X′) =

P
l w

00
l kl(X; X′):

Ep;q[k(x; x0)] =
P

i;j;l wiw
0
jw

′′

l Epi;qj
[kl(x; x0)]

) expectation is “pushed down” to children

26/36



smooth + decomposable + compatible = tractable E[k]

[Product Nodes] p×(X) =
Q

i pi(Xi), q×(X′) =
Q

i qj(X′
i), and kernel k×(X; X′) =

Q
i ki(Xi; X′

i):
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[Product Nodes] p×(X) =
Q

i pi(Xi), q×(X′) =
Q

i qj(X′
i), and kernel k×(X; X′) =

Q
i ki(Xi; X′

i):

P
x;x′ p�(x)q�(x0)k�(x; x0)

=
P

x;x′
Q

i p(xi)q(xi)ki(xi; x0
i)

=
Q

i(
P

xi;x′
i
p(xi)q(xi)ki(xi; x0

i))
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smooth + decomposable + compatible = tractable E[k]

[Product Nodes] p×(X) =
Q

i pi(Xi), q×(X′) =
Q

i qj(X′
i), and kernel k×(X; X′) =

Q
i ki(Xi; X′

i):

Ep×;q× [k�(x; x0)] =
Q

i Ep;q[k(xi; x0
i)]

) expectation decomposes into easier ones

27/36



smooth + decomposable + compatible = tractable E[k]

Algorithm 1 Epn;qm [kl] — Computing the expected kernel

ϥnput: Two compatible PCs pn and qm, and a KC kl that is
kernel-compatible with the PC pair pn and qm.

1: if m; n; l are input nodes then
2: return Epn;qm [kl]
3: else if m; n; l are sum nodes then
4: return

P
i2in(n);j2in(m);c2in(l) wiw

0
jw

′′
c Epi;qj

[kc]
5: else if m; n; l are product nodes then
6: return EpnL

;qmL
[kL] � EpnR

;qmR
[kR]

Computation can be done in
one forward pass!
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smooth + decomposable + compatible = tractable E[k]

Algorithm 2 Epn;qm [kl] — Computing the expected kernel

ϥnput: Two compatible PCs pn and qm, and a KC kl that is
kernel-compatible with the PC pair pn and qm.

1: if m; n; l are input nodes then
2: return Epn;qm [kl]
3: else if m; n; l are sum nodes then
4: return

P
i2in(n);j2in(m);c2in(l) wiw

0
jw

′′
c Epi;qj

[kc]
5: else if m; n; l are product nodes then
6: return EpnL

;qmL
[kL] � EpnR

;qmR
[kR]

Computation can be done in
one forward pass!

) squared maximum mean discrepancyMMD [p; q] [Gretton et al. 2012]

) + determinism, kernelized discrete Stein discrepancy (KDSD) [Yang et al. 2018]
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Applications

Collapsed black-box importance sampling
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Recap Black-box Importance Sampling [Liu et al. 2016]

Empirical KDSD S(f w(i)

weights

; x(i)

samples

gn
i=1 k p)

S2(fw(i); x(i)gn
i=1 k p) = w>Kpw; with [Kp]ij = kp(x(i); x(j))

Given a distribution p, and samples fx(i)gn
i=1, the black-box importance sampling

obtains weights by solving optimization problem

w� = argmin
w

(
w>Kpw

�����
nX

i=1

wi = 1; wi � 0

)
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Recap Black-box Importance Sampling [Liu et al. 2016]

Empirical KDSD S(f w(i)

weights

; x(i)

samples

gn
i=1 k p)

S2(fw(i); x(i)gn
i=1 k p) = w>Kpw; with [Kp]ij = kp(x(i); x(j))

Given a distribution p, and samples fx(i)gn
i=1, the black-box importance sampling

obtains weights by solving optimization problem

w� = argmin
w

(
w>Kpw

�����
nX

i=1

wi = 1; wi � 0

)
Can we use less samples but maintain the same or even better performance?

) Collapsed samples!
30/36



Collapsed Black-box Importance Sampling

Given partial samples fxs
(i)gn

i=1, with (Xs; Xc) a partition of X,

Represent the conditional distributions p(Xc j xs
(i)) as PCs pi by knowledge

compilation [Shen et al. 2016]

Compile the kernel function k(Xc; Xc
0) as KC k

Empirical KDSD between collapsed samples and the target distribution p

S2
s(fxs

(i); wig k p) = w>Kp;sw

with [Kp;s]ij = Exc�pi;x
′
c�pj

[kp(x; x0)]

Finally, obtain the importance weights w by solving

w� = argmin
w

(
w>Kp;sw

�����
nX

i=1

wi = 1; wi � 0

)
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