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A Fundamental Task

Given two distributions P and ¢, and a kernel K, the task is to compute
the expected kernel

Ex px q[k(X;XO)]
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) In kernel-based frameworks, expected kernels are omnipresent!

squared Maximum Mean Discrepancy (MMD)
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A Fundamental Task

Given two distributions P and ¢, and a kernel K, the task is to compute
the expected kernel

Ex p;x? q[k(X;XO)]

) In kernel-based frameworks, expected kernels are omnipresent!

Discrete Kernelized Stein Discrepancy (KDSD)
Exx qlKp(X; x7)]
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Challenge

Reliability vs. Flexibility

Z
Ex px qlkOGXD] = p(X)q(Ok(x; x") dx dx’

XX
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Z
Ex px qlkOGXD] = p(X)q(Ok(x; x") dx dx’

XX
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p(x) = "ipi). a() = ";alxi)
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Challenge

Reliability vs. Flexibility

Z
vV — 0 ) 0
Ex px olkCGX)]I= p(x)a(x)k(x; x) dxdx
x; X0
P; q; K fully factorized trade-off? Hard to compute in general.
S approximate with MC
PRO. Tractable exact computation or variational inference
CON. Model being too restrictive PRO. Efficient computation

CON. no guarantees on error bounds
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Expressive distribution models
+

Exact computation of expected kernels?
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Expressive distribution models
+

Exact computation of expectated kernels

Circuits!
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Probabilistic Circuits

deep generative models + deep guarantees

936



Probabilistic Circuits

deep generative models + deep guarantees

Kernel Circuits

express kernels as circuits

936



Probabilistic Circuits

deep generative models + deep guarantees

Kernel Circuits

express kernels as circuits

> Ex p;x! q[k(X; XO)]
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Probabilistic Circuits (PCs)

Tractable computational graphs

I. A simple tractable distribution is a PC

) e.g., a multivariate Gaussian
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I. A simple tractable distribution is a PC
IIl. A convex combination of PCs is a PC
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Probabilistic Circuits (PCs)

Tractable computational graphs
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Tractable computational graphs
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Probabilistic queries &l feedforward E=\UVE\dle]y

p(Xy = 1:85;X, =0:5; X3 = 1:3;X4 =0:2)
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Probabilistic queries Bl feedforward E\EUSE o]y

p(Xy = 1:85;X, =0:5; Xz = 1:3; X4 =0:2) =0:75
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o) deep learning

PCs are computational graphs
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o) deep learning

PCs are computational graphs encoding deep mixture models
stacking (categorical) latent variables
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o) deep learning

PCs are computational graphs encoding deep mixture models
stacking (categorical) latent variables
PCs compactly represent polynomials with exponentially many terms
universal approximators

PCs are expressive deep generative models!
) we can learn PCs with millions of parameters in minutes on the GPU [Peharz
etal. 2020]
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On par with intractable models!

How expressive are PCs?

dataset best circuit BN MADE VAE dataset best circuit BN MADE VAE
nltcs -5.99 -6.02 -6.04 -5.99  dna -79.88 -80.65 -82.77 -94.56
msnbc -6.04 -6.04 -6.06 -6.09 kosarek -10.52 -10.83 - -10.64
kdd -2.12 -2.19 -2.07 -212  msweb -9.62 -9.70 -9.59 -9.73
plants -11.84  -12.65 -12.32 -1234  book -33.82 -36.41 -33.95 -33.19
audio -39.39  -40.50 -38.95 -38.67  movie -50.34 -54.37 -48.7 -47.43
Jester -51.29 -51.07 -52.23 -51.54 webkb -149.20 -157.43 -149.59 -146.9
netflix -55.71 -57.02  -55.16  -54.73  cr52 -81.87 -87.56 -82.80 -81.33
accidents -26.89  -26.32 -26.42  -29.11 c20ng -151.02  -158.95  -153.18 -146.9
retail -10.72 -10.87 -10.81 -10.83 bbc -229.21 -257.86 -242.40 -240.94
pumbs* -22.15 2172 -22.3 -25.16  ad -14.00 -18.35 -13.65 -18.81

Peharz et al., “Random sum-product networks: A simple but effective approach to probabilistic

deep learning”, 2019 13136



Unifying existing tractable models

Chow-Liu trees Junction trees HMMs
[Chow and Liu 1968] [Bach and Jordan 2001] [Rabiner and Juang 1986]

Classical tractable models can be compactly represented as PCs

Dang et al., “Strudel: Learning Structured-Decomposable Probabilistic Circuits”, 2020 14s6



Junction trees HMMs

Chow-Liu trees
[Bach and Jordan 2001] [Rabiner and Juang 1986]

[Chow and Liu 1968]

”‘/éj\‘H N
2 R s
Qo 0 @O &0 e
S
CNets SPNs PSDDs PDGs
[Rahman et al. 2014] [Poon et al. 2011] [Kisa et al. 2014] [Jaeger 2004]
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Mo deep learning g4 deep guarantees

PCs are expressive deep generative models!
&

Certifying tractability for a class of queries

verifying structural properties of the graph

1636



Which structural constraints
ensure tractability?

17136



decomposable g m PCs

A PCis decomposable if all inputs of product units depend on disjoint sets of variables

decomposable circuit

Darwiche and Marquis, “A knowledge compilation map”, 2002 18136



decomposable g m PCs

A PCis decomposable if all inputs of product units depend on disjoint sets of variables
A PCis smooth if all inputs of sum units depend of the same variable sets

X X3

decomposable circuit smooth circuit

Darwiche and Marquis, “A knowledge compilation map”, 2002 18136



decomposable g m PCs=%¥

Choi et al., “Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Modeling”, 10
2020 36



decomposable g m PCs=%¥

m sufficient and necessary conditions for computing any marginal
VA

ply) = p(z;y)dz; 8Y X; Z=XnY
val(Z)

) by a single feedforward evaluation

Choi et al., “Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Modeling”, 10
2020 136



decomposable B smooth X

R
m sufficient and necessary conditions for computing any marginal - p(z;y) dZ

sufficient and necessary conditions for any conditional distribution

val(H) p(z;y;h)dH .
val(H) val(Y) p(z;y;h) dH day’
) by two feedforward evaluations

8Z;Y X

pyjz) =R

Choi et al., “Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Modeling”, 1o
2020 .



decomposable g m PCs=%¥

R
m sufficient and necessary conditions for computing any marginal  p(z;y) dZ

p(z;y;h) dH
p(z;y;h) dH dY

R
sufficient and necessary conditions for any conditional B

n What about the expected kernel Ex pxi o[K(X; X")]?

Choi et al., “Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Modeling”, 10
2020 136



Can we represent kernels as circuits
to characterize tractability of its queries?

20136



Kernel Circuits (KCs)

P
Exa. Radial basis function (RBF) kernel k(x; X%) = exp ( i XD

exp( jX: X2 ()

exp( jX2 X33 O\
exp( jXs XD exp( jXa X}
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Kernel Circuits (KCs)

P
Exa. Radial basis function (RBF) kernel k(x; X"y =exp (i Xi X!j?)

exp( X X$2) ()

exp( Xz X32) ()
exp( jXs X§j?) exp( jXs  Xjj%)
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Kernel Circuits (KCs)

P
Exa. Radial basis function (RBF) kernel k(x; X"y =exp (i Xi X!j?)

exp( X1 X112 ()

exp( Xz X352 (1
exp( JXs  X3i) exp( JXa  X4i%)
(LI DXL if all inputs of product units depend on disjoint sets of variables

m if all inputs of sum units depend of the same variable sets
2136



Kernel Circuits (KCs)

Common kernels can be compactly represented as

decomposable +m KCs:

RBF, (exponentiated) Hamming, polynomial ...

22136



Expected Kernel

tractable computation via circuit operations

i) PCs p and @, and KC K are decomposable + smooth

23536



Expected Kernel

tractable computation via circuit operations

i) PCs p and @, and KC K are decomposable + smooth
ii) PCs p and @, and KC K are compatible

) decompose in the same way

23536



Expected Kernel

tractable computation via circuit operations

i) PCs p and @, and KC K are decomposable + smooth
ii) PCs p and @, and KC K are compatible

X19fX2g

T(X1; X1)gf(X2; X3)9

23536
X19FX5g



Expected Kernel

tractable computation via circuit operations

i) PCs p and @, and KC K are decomposable + smooth
ii) PCs p and @, and KC K are compatible

X1, X29FX3g

T(X1; X1); (X2; X5)9F(Xs; X3)9

23536
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Expected Kernel

tractable computation via circuit operations

i) PCs p and @, and KC K are decomposable + smooth
ii) PCs p and @, and KC K are compatible

X1, X2; X39fX4g

T(X1; X1); (X2; X5); (X3; X5)af(Xa; X})g

23536
X1 X5: X39X ;9



Expected Kernel

tractable computation via circuit operations

i) PCs p and @, and KC K are decomposable + smooth
ii) PCs p and @, and KC K are compatible
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Expected Kernel

tractable computation via circuit operations

i) PCs p and @, and KC K are decomposable + smooth
ii) PCs p and @, and KC K are compatible

Then computing expected kernels can be done tractably by a forward pass
product of the sizes of each circuit!

2536



m sl decomposable g3 o] tractable E[k]

[Sum Nodes] p(X) = W.p.(X) ax) =" jwja;(X'), and kernel k(x; X’) = P wI %1 X X):
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m sl decomposable g3 o] tractable E[k]

[Sum Nodes] p(<) = ; wip: (30, 4(X) = wia; (), and kernel k(x; X' = P 1 X:

P
X;x! p(X)q(Xo)k(X; XO)
= i Wiwiwy P ()0 () ki (x; X))
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m sl decomposable g3 o] tractable E[k]

[Sum Nodes] p(X) = W.p.(X) ax) =" jwja;(X'), and kernel k(x; X’) = P wI %1 X X):

= Oy’ )
EpqlkOGXOT = i wiwjwy Ep o, [ (X X0)]

) expectation is “pushed down” to children

26136



m sl decomposable g3 o] tractable E[k]

[Product Nodes] p . (X) = Q, pi(Xi), g (X)) = Q, q; (X)), and kernel k., (X; X") = ~; ki(Xi; X}):
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m sl decomposable g3 o] tractable E[k]

[Product Nodes] p. (X) =

“one

P, b0, 0. (X7 =

i

Q, a; (X}), and kernel k.. (X; X)— i ki (X X5):

g (xHk (x;x)
§ OGO ) ki (xi; )
xxt PO (X0 ki (Xi; X7))
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m sl decomposable g3 o] tractable E[k]

[Product Nodes] p . (X) = Q, pi(Xi), g (X)) = Q, q; (X)), and kernel k., (X; X") = ~; ki(Xi; X}):

By o Tk (6] = By [0 X))

) expectation decomposes into easier ones

2736



m sl decomposable g3 =} tractable E[k]

Algorithm 1 Ep, g, [Ki] — Computing the expected kernel

Input: Two compatible PCs P, and Qm, and a KC K; that is

kernel-compatible with the PC pair Pn and Qm. . .
1: if m; n; | are input nodes then ComPUtat’on can be done In
2 return Bpyqn K] one forward pass!
3: elseif m;ll_il,' | are sum nodes then

4 Teturn  oin(nyj2in(m);c2in(l WiWW¢ Ep;.q; [Ke]

5

6

. else if m; n; | are product nodes then
return Ep,, :qm [KL] Eppyiamg [KR]

28136



m sl decomposable g3 =} tractable E[k]

Algorithm 2 Ep, g, [Ki] — Computing the expected kernel

Input: Two compatible PCs P, and Qm, and a KC K; that is

kernel-compatible with the PC pair Pn and Qm. . .
1: if m; n; | are input nodes then ComPUtat’on can be done In
2 return Bpyqn K] one forward pass!
3: elseif m;ll_il,' | are sum nodes then

4 Teturn  oin(nyj2in(m);c2in(l WiWW¢ Ep;.q; [Ke]

5

6

. else if m; n; | are product nodes then
return Ep,, :qm [KL] Eppyiamg [KR]

) squared maximum mean discrepancy MMDI[pP; Q] [Gretton et al. 2012]
) + determinism, kernelized discrete Stein discrepancy (KDSD) [Yang et al. 2018]

28136



Applications

Il Collapsed black-box importance sampling

2936



Black-box Importance Sampling [iu et al. 2016]

Empirical KDSD S(fWI_I(i); |)£)| gL, kp)

weights samples

S2(Fw®; xDgi, k p) = wwKpw; with [Kplij = ko(x®; x8))

30136



Black-box Importance Sampling [iu et al. 2016]

Empirical KDSD S(fWI_I(i); |)£)| gL, kp)

weights samples
S2(Fw®; xDgi, k p) = wwKpw; with [Kplij = ko(x®; x8))

Given a distribution P, and samples fX(i)g'i":l, the black-box importance sampling
obtains weights by solving optimization problem
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weights samples
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Given a distribution P, and samples fX(i)gi”:l, the black-box importance sampling
obtains weights by solving optimization problem

C - >

w =argmin w~Kyw wi=1w O
w i—
i=1
Can we use less samples but maintain the same or even better performance?
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Black-box Importance Sampling [iu et al. 2016]

Empirical KDSD S(fWI_I(i); |)£)| gL, kp)

weights samples
S2(Fw®; xDgi, k p) = wwKpw; with [Kplij = ko(x®; x8))

Given a distribution P, and samples fx(i)g'{‘:l, the black-box importance sampling
obtains weights by solving optimization problem

C - >

w =argmin w~Kyw wi=1w O
w .
i=1

Can we use less samples but maintain the same or even better performance?

I
Collapsed samples! 300



o0 /[.[. 511 Black-box Importance Sampling
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B Represent the conditional distributions p(Xc j Xs() as PCs p; by knowledge
compilation [Shen et al. 2016]

Compile the kernel function K(X¢; X¢") as KC k
B Empirical KDSD between collapsed samples and the target distribution p
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Black-box Importance Sampling

iven partial samples TXg . iz, Wit s; X¢) a partition of X,

M Gi ial les TxsVgiL,, with (Xs; X fX
epresent the conditional distributions p(Xc j xsM) as PCs p; nowledge
Rep h ditional distributi X MY as PCs p; by knowledg
compilation [Shen et al. 2016]

Compile the kernel function K(X¢; X¢") as KC k

B Empirical KDSD between collapsed samples and the target distribution p

S2(FxsV; wig k p) = WKW

with [Kp;s]ij = Ex. Pi;Xe Pj [kp(X; XO)]
B Finally, obtain the importance weights W by solving

C ¢ )

W = argmin W>Kp;sw wi=1w; O
w .
=1

3136
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