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Abstract

Weighted model integration (WMI) is a framework to perform advanced probabilistic
inference in hybrid domains, i.e., on distributions over mixed continuous-discrete
random variables and in the presence of complex logical and arithmetic constraints.
In this work, we advance the WMI framework on both the theoretical and algorithmic
side. First, we trace the boundaries of tractability for WMI inference in terms of two
key properties of a WMI problem’s dependency structure: sparsity and diameter.
We prove that exact inference is only efficient if that structure is tree-shaped with
logarithmic diameter. While this result deepens our theoretical understanding of
WML it hinders the practical applicability of exact WMI solvers to large problems.
To overcome this, we propose the first approximate WMI solver that does not resort
to sampling, but performs exact inference on an approximate model. Our solution
iteratively performs message passing in a relaxed problem structure to recover lost
dependencies. As our experiments show, it scales to problems that are out of the
reach of exact WMI solvers while delivering accurate approximations.

1 Introduction

Consider an autonomous agent operating under uncertainty in a real-world scenario, for instance a
self-driving vehicle. It has to model both continuous variables like the speed and position of other
cars and discrete ones like the color of traffic lights and the number of pedestrians. Moreover, in
order to make decisions, it needs to perform advanced probabilistic reasoning. For example, it has to
reason about physical constraints while computing the probability of a grounded scene described via
complex algebraic constraints, such as the geometry of vehicles and the roads ahead.

Performing probabilistic inference in these constrained and hybrid (mixed continuous-discrete)
scenarios goes beyond the limited inference capabilities of intractable probabilistic models such
as variational autoencoders [28] and generative adversarial networks [25]]. This is also the case
for classical probabilistic graphical models for hybrid domains [27, [32]] and more recent tractable
alternatives [33 38} 140] which struggle to either perform inference over complex algebraic constraints
or make too simplistic representational or distributional assumptions.
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On the other hand, Weighted Model Integration (WMI) [8} 34] is a modeling and inference framework
that supports general hybrid probabilistic reasoning over algebraic constraints, by design. Indeed, in
the WMI framework, mixed complex continuous-discrete interactions can be easily expressed in the
language of Satisfiability Modulo Theories (SMT) [[7] and answering probabilistic queries involving
algebraic constraints can be naturally cast as integration of certain weight functions over the regions
that satisfy those constraints.

In this paper we advance the WMI framework on two fronts. First, we deepen the theoretical
understanding of the complexity of WMI inference on real-world problems by proving hardness
results. Second, we deliver an efficient and accurate approximate WMI solver as a practical algorithmic
solution to deploy WMI inference at a larger scale.

Specifically, we study the dependency structure of WMI problems as specified by the primal graph of
their SMT formula [22]]. We prove that performing exact inference is #P-hard if the primal graph
has a treewidth larger than one or a diameter that is linear in the number of variables. Second, to
overcome these negative results, we introduce REColn , a practical algorithmic solution that extends
the relax-compensate-and-recover framework [[14} 16} [17]] for approximate discrete inference to hybrid
inference scenarios with algebraic constraints. As our experiments suggest REColIn candidates as the
best alternative, in terms of scalability and accuracy of the delivered approximations, in the current
panorama of general-purpose WMI solvers.

The rest of the paper is organized as follows. In Section [2] we introduce the notation and background
needed to later prove our theoretical results in Section[3]and to introduce REColn in Section[d] Before
evaluating RECoIN in Section [6] we discuss related work in Section 3]

2 Background

Notation. Uppercase letters denote random variables (X; B) and lowercase letters denote their
assignments (X; b). We use bold for sets of variables (X; B), and their joint assignments (X; b). We
use capital Greek letters for logical formulas ( ; ). Literals are atomic formulas or their negation,
and are denoted using either * or lowercase Greek letters ( ; ). Welet X |=  denote the satisfaction
of a formula by an assignment X. Its corresponding indicator function is nX = 0.

Satisfiability Modulo Theories . To represent complex relationships between discrete and continu-
ous variables, we harness the language of Satisfiability Modulo Theories (SMT) [7] which generalizes
Boolean propositional logic [6]]. Specifically, we use SMT over linear real arithmetic (LRA) which
has been used as an expressive modeling language for probabilistic programming [13]], model checking
[23] and robotics [20]. As is common, we adopt quantifier-free SMT(LRA) formulas and we assume
them to be in conjunctive normal form (CNF), that is, a conjunction of clauses. For brevity, we will
refer to them as simply SMT formulas. To characterize the dependency structure of an SMT formula
we make us of its primal graph representation.

Definition 2.1. (Primal Graph) Let  be an SMT formula. Then its primal graph G = (V; &) is the
undirected graph whose vertex set ‘V is the set of variables in formula , and whose edge set & has
edge X —Y iffvariable X and variable Y appear together in one clause €

Example 2.2 (SMT formula and its primal graph). Consider the SMT formula on the left over
continuous variables X;Y; Z and boolean variable B, its primal graph G is shown on the right.

((OSXSZ)/\(ISYSZ)/\(OSZSZ) e
= (X>1)vB .
(X+Y <HAX+Z22)AY+Z<3) O=0=0

Weighted Model Integration (WMI). Weighted Model Integration (WMI) [8}34] is a framework
for probabilistic modeling and inference over mixed continuous-discrete distributions in presence of
algebraic constraints defined as SMT formulas. These representations are captured by WMI models.

Definition 2.3. (WMI model) Let X be a set of continuous random variables assuming values in R,
and B a set of Boolean random variables assuming values in B = {true, false}. A WMI model is a
pair ( W), where is an SMT formula over X and B, and W : (X;b) — R* is a positive function,
called the weight function.



We consider classes of WMI problems whose weight function comes from a parametric function
family, denoted . Moreover, we adopt the common assumption of weight functierie be

de ned as products of per-literal weighi8, [11,/41]. That is,w is de nable via a set of functions

W = fw1x°g, , whereL are the literals in . and whe]'e eachr is de ned over variables in
literal . Then, the weight of assignmeng b°is: wix; b =" ., w: 1x; bo™bF °: Hence, we will
represent WMI models as pairs; W° .

De nition 2.4. (WMl task) Let ; W° be a WMI model over real variable$ and Boolean variables
B. TheWMI taskfor* ;W®° is to compute | .
@) 0O .
WMIL ;W ; X;B°, Weix; ho™PFETo gy Q)
o 1X;b0j: 2'—
b 2BIBI

That is, the task is to sum over all possible Boolean assignnibet8IBi while integrating over the
weighted assignments Xfthat satisfy the formulalx; b® F

When all weightaw 1x° are constants and all variables continudBis=(; ) we retrieve the model
integration (MI) taskl41], whereas when all variables are Boolean (de5 ;) WMI equals the
well-known weighted model counting (WMC) tagkl]l. Inthe general case, solvigMI* ;W ; X; B®
equals to computing the partition function of the unnormalized probability distribution induced by
weightsW on formula and restricted to the regions wheras SAT.

As such, computing the probability of an event represented as an SMT forminolelving algebraic
constraints w.r.t. the distribution induced ¥y on can be done by computing the WMI of the
conjunction of formula and formula , normalized by the partition function:

Prt o=WME ~ ;W ;X;B° WMI ;W ;X;B

Example 2.5 (Advanced probabilistic inference with WMI)Consider the SMT formula in
Exampld 2.p with per-literal weightd/ = fw:,1B° := 2; w,1x° := x%; w1y, 2° := 2yzg where
1:=B,2:=x 1, '3:=y+z 3and all the weights associated to other literals are constantly 1.

Then the WMI of formula evaluates to:
1 1 1

2 x+3 y+3 1117
WMIT ;W ;X;B°=  dx dy X% 12+ 10 1x+y°0 2yz dz= —3:
1 1 x+2 480

Moreover, for the two formulas; = 1B=truePand =0 z 1, then
Priqj °=WMIE A A W ;X BPe WMIT A ;W ;X;B%= 18936 78211 0:242

From here on, w.l.0.g. we will assume WMI problems to be de ned on continuous variables only.
We leverage the polytime reduction introduced in Zeng and Van den Bfd&tko map a WMI
problem! ;W®° over continuous and Boolean variab¥sindB to a new WMI problent Sw ®

over continuous variable$®only. This is done by properly introducing auxiliary variablesdihto
account forB. The resulting primal grap® o is isomorphic toG . For instance, we can replaBan
Examplg 2.5 by a real variablg having values in 1; 1%without changing the WMI task nor the
treewidth or the diameter of the primal graph (cf. Apperidjx A).

3 Onthe hardness of WMI

While the general formulation of WMI we have provided in the previous section is elegant and
appealing for advanced probabilistic reasoning, it is, however, not practical in general. In fact, it
requires solving an arbitrarily complex integral, which is a #P-hard problem [5].

To Il this gap, recent works have started looking fdasses of tractable WMI problerise., problems

for which a solution can be computed exactly in polytimé, [42]. These classes of problems can be
characterized by two parameters: theewidthand thediameterof the primal graph of the SMT
formulas considered, where the latter is generally expressed as a function of the number of variables
in the problem. Note that this is strikingly di erent from classical discrete probabilistic graphical
models, where most of the complexity results are stated in terms of the treewidth[alon€ [31, 36].

De nition 3.1. (WMI 1 ; ; t° Problem Class) Le?VMI 1 ; ; t° be the class of WMI problems over
models of the forrh ; W° on real domains, having primal grapé with diameter of * n°®®and
treewidtht, wheren is the number of variables in the formula and having per-literal weight8V in

a function family .



The largest tractable WMI class known so far has been introduced in Zeng Bt2hlas
WMI t ;logtn% 19 i.e., the class of problems ovarreal variables whose primal graph is tree-
shaped (treewidtt) and has diameter of length logarithmicrinand whose weight functions belong
to a function family  satisfying some conditions callédctable weight condition§T' WCs).

De nition 3.2. (TWCs) Given a parametric weight function family it satis es the TWCs i

i) itis closed under product, i.e8f;g2 ,f g2 ;
ii) itis closed under de nite integration, i.e8,f 2 ; Futx®® Fix%© 2 whereF is the
antiderivative off, and|*x®, ux® are SMT{LRA ) integration bounds for any 2 X;
iii) the symbolic antiderivative of anfy2  can be tractably computed by symbolic integration.

Examples of weight functions in family include the largely adopted family of (piecewise)
polynomials B], the family of exponentiated linear functions and the family of their products. In the
following analysis, we will restrict our attention to weight function families satisfying the TWCs.

In Zeng et al[42] the tractability of problem clas&/MI * ;log'n 1°is demonstrated by construction,
where they introduce a message passing scheme, named MP-WMI, that runs in polytime on tree-shaped
and diameter-bounded primal graphs. That s, semeient conditions for tractable WMI classes are
provided. Here we provide a ner charting of the tractable islands of WMI problems by questioning

the necessity of the above conditions while looking for larger tractable classes. We prove that unless
P = NP, larger classes are not tractable. We begin by proving that increasing the diameter of a
tree-shaped problem structure makes it hard.

Theorem 3.3. Let WMI * ; n; 1° be the class of WMI problems whose weight function family
satis es the TWCs. Then inferenceWil * ;n; 1°is #P-hard.

Sketch of proof We build a polytime reduction from a #P-complete variant of the subset sum
problem R4, 12, 26] to a WMI problem with constant weights and whose primal gr&phis a chain
with diameter exactly. A complete proof is in Appendix B.

Next, we turn our attention to another class of WMI problems, the e\dg$ * ; logtn®, 2°, having
logarithmic diameter but treewidth 2. This class is also supposed to be easy inthe sense that it extends
the tractable clasg/MI t ;log!n®, 1° by slightly increasing the treewidth by one. Unfortunately,
inference iNWMI t ;log'n® 2° s also hard.

Theorem 3.4.LetWMI 1 ;logtne 2° be the class of WMI problems whose parametric weight function
family satis es the TWCs. Then inferenceWMIl t ;logn® 2°is #P-hard.

Sketch of proof Analogously to Theorem 3.3, we prove it by constructing a polytime reduction from
a #P-complete variant of the subset sum problemNt problem whose primal graph has treewidth
two but diameter being at molstgn®. A complete proof is provided in Appendix B.

Note that our result di ers from the one presented4d][for the hardness of the clagVMIt ©,
containing WMI problems with SMT formulas being conjunctions of clauses comprising at most
two variables. In factWMI 1 ;logtn% 2°is contained irRWMIt ©°. As such, we trace the tractablity
boundaries of WMI inference with higher precision, as the next corollary states. Its proof follows
from Theorems 3.3 and 3.4 and from the su ciency as demonstrated in Zeng et al. [42].

Corollary 3.5. Let WMI 1 ;log'n%t° be the class of WMI problems whose parametric weight
function family satis es the TWCs. TheWMI t ;logn% t°is a tractable WMI class for inference
if-and-only-if treewidtht = 1.

These complexity results set the standard for the solver complexity: every exact WMI solver that aims
to be e cient, needs to operate in the regime of Corollary 3.5. However, real-world problems do not
always conform to the structural desiderata for primal graphs stated in it. This implies that e cient
approximations might not only be useful in these scenarioshéeded In the next section we I

this gap, by introducing our approximate WMI solver that navigates the tractable islands in WMI
problems by performing e cient inference on a relaxed version of intractable WMI problems.



4 ReColn: Relax, compensate and then integrate

Our algorithm to approximate WMI inference comprises three phas&Elgxingan intractable

WMI model into a simpler one amenable to exact inference by removing dependencies from it; then
ii) introduce certain literals and weights @Ompensatéor the dependency structure lost in this way

and iii) optimize them by solving a series of ex#ldtegrationproblems. We name ReColn. With
ReColnwe can navigata spectrum of approximationsvith the original primal graph G on one

end, and a fully disconnected version on the other by removing more and more edges. As such,
ReColncan be viewed as extending tredax-compensate-recovéiRCR) framework 14, 16, 17] for
approximate inference on discrete probabilistic models to continuous representations and in presence
of algebraic constraints.

4.1 Relaxation: introducing and then breaking equivalence constraints

The aim of the relaxation step is to obtain a new SMT formufasuch that its associated primal
graphG 1, serves as the simpli cation of the origin@ by removing a given set of edges. We will
show that the removal of any edge can be formulated as the removal of an equivalencErgdge [
This process consists of two steps. First, we creatausgmented formula 2“9 by introducing
new variables to and enforcing them to act aspiesof certain original variables by explicitly
addingequivalence constraintsSecond, we deliver the relax&i . by removing these equivalence
constraints.

Augmentation. The detailed process of distilling a new augmented méd&{9; W 249° from

1 ;W©°, given a subset of edgés E in G to remove, is listed in Algorithm 2 in Appendix C.

At its core, there are routines for copying one variable and adding the corresponding equivalence
constraints and compensating literals. For each eglgeX; 2 Eq to be removed, one of its variables

is arbitrarily selected, say;. Then a variableX®, as a copy of the chosex, is introduced in &9 as

well as one equivalence constraint between the two as the Ift‘eﬁa{ic = X;°with associated weight
function 1X;; X°°where is the Dirac delta function. Then we properly rename all occurrencis of
by X¢ in the literals appearing in the clauses 6f9 that also contairX; and introduce copied literals
for the univariate clauses ov&f only. These steps cause the primal gr&phg to now contain the
dependency; X¢ X butnotX X;.

Note that the augmented WMI model2Y9; W 248° now contains more variables than the original
one. Speci cally, for each variabl® 2 G we might have introduce@; di erent copies inG auw,
denoted aé(il; i :;)(].Ci , if we removedC; edges ovek;. We will denote the originak; ainO for
notation consistency. Even if the dimensionality of the augmented WMI problem is increased by
augmentation, the next propositions are guaranteeing that we are not altering the partition function
and the marginal distributions & , and that introducing equivalence constraints does not alter the
induced distribution.

Proposition 4.1. Let be an SMT formula with primal grap8 and per-literal weight functions
W , and let 249 andW 249 be the output of Algorithm 2 when applied tandG given a certain
subset of edges i® . Then it holds thaWWMIt ;W° = WMIt aug;\\/ audo  Moreover, for anyX; in
G and univariate literal overX;, it holds thatPr 1°° = Pr ayl'°,

Removing equivalence constraints. Given an augmented model249; W 2490 we remove equiv-
alence constraints introduced at the augmentation step to obtain the relaxed mdpal ®'°. As a
result, each original variable i@ « will be detached from its copies, thus ignoring the dependencies
encoded by the edgés; that were marked to be removed. Algorithm 3 details this procedure. Note
that relaxation breaks the augmented formul@d into a relaxed part "' and a remaining part

rem “which contains the equivalence constraints just removed.

Example 4.2. Consider the WMI modél ; W° of Example 2.2. Its augmented formul'? obtained

by applying Algorithm 2 for edgdsy = f X Zgto be removed (orange), and its relaxed formula
el and remaining formula "™ obtained by Algorithm 3 have their primal graphs shown on the left,

center and right below respectively. The detailed WMI models for each are shown in Appendix A.

Which edges to relax? After relaxing enough constraints, we can obtain a WMI problem amenable
to exact inference, for example, one whose primal gréph has treewidth one and logarithmic
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diameter. Running an exa@MI solver on such a problem would already deliver a cheap way
to perform approximate inference. However, the quality of such an approximation can be greatly
improved if we compensate for the relaxed constraints. We will discuss this in the next section.

@@

A guestion remainshow to select the set of edgés to relax? Note that the more edges we remove
from , the easier it is to perform inference off' given fewer dependencies, but the lower the
approximation quality, and the harder to compensate for them all, since it would di er from the
augmented model more, and meanwhile from the original model as Proposition 4.1 indicates. For
example, removing all edges & will yield a fully disconnecteds . where performing exact
inference on each component is going to be embarrassingly parallelizable. This would correpond
to perform a loopy version of the MP-WMI algorithm. Analogous to its discrete counterpart, loopy
belief propagation, it would be susceptible to poor converge ratedfl]. Therefore we propose

a simple strategy for selecting the edges to be removed, which is to retrieve a spanning tree of the
original primal graph. In Section 6 we demonstrate its practical e ectiveness on a range of inference
problems of increasing complexity. Devising and evaluating alternative relaxing strategies is an
interesting topic for future work.

4.2 Compensation

The aim of the compensation phase is to recover the relaxed equivalence constraints and hence, make
the distributionPr « better approximater =y and thus better approximal®e as Proposition 4.1
suggests. In order to do so, we introduce new literals, nasoetbensating literaldo the variables

and their copies in the relaxed formul&' and equip them with parameterized weights, named
compensating weightand further we optimize them in order to synchronize the variable marginals
among a copied variable and its copies.

For each variable = XIO and |tsC. coplesXI XIC' in formula "', we generatda( di erent

univariate literals of the formc )(I ik ikCfork=1:::;Kandc=01:::;C where

each j.x and i« are respectlvely drawn at uniform from1, 1g and the support aX; as encoded in
[e' Note that the i.x; i.x aresharedacross all the copies. Algorithm 4 in Appendix C summarizes

this procedure. Each compensating Ilteﬁl is therefore responsible for a portion of the support of

the marginal distribution oKS, and also for the (unnormalized) marginal densitysfby equipping

it with a parameterized weight: &

To retain tractable inference, the parametric function family chosen forwactshould satisfy the

TWCs as discussed in section 3. Striving for simplicity, we employ constant we|ghts of the form
We, = exph £ % Therefore, our induced marginal density takes the form of a piecewise constant

apprOX|mat|on As such, by i mcreasmg the number of compensating litérahe could obtain a ner
approximation, however at the price of introducing more parameters to optimize for. We empirically
investigate the e ect of increasin§ in our experiments in section 6.

4.3 Iterative integration

Instead of matching marginal density functions we settle for the weaker conditioatohing the
marginal probabilities of the newly introduced compensating literdlsis in turn can be stated by
the following set of equivalence constraints for each variable

U

Ci . . C:
Pr rem CI c = Pr =Pr e = =Pr Ci .

| ki for k=1, K (2)

0
-0 Ki k;i

where the rsttermPr rem ?:'o v isthe probability of the compensating literals in the remaining
WMI model* "MW ®MeandPr « "C. are the probabilities of compensating literals in the relaxed
formula "' Intuitively, for a single equivalence constraint that has been relaxed, there exists a set of



Algorithm 1 ReColn( ;W ;K)
Input: a WMI modelt ;W°, K number of compensating literals
Output: * "W 'elo: 3 relaxed and compensated WMI model
Eq initStrategy! ;W° . Select edges to remove
aug. \\/ aug. | augmentModel* ;W ; E4°
1 reI;W relo, 1 rem; \\/ remo relaxModel? aug;W aug; Lo
rel. W ¢l addingCompensationst "e: W el | ; K©
while not convergedio
for X; 2 copiedNodes! '®'° do
for k=1;:::;Kdo o
rk WMIL rem;Wremo,WN“l rem A SIO \ka remo 1
forc=01;:::;G do
c;it+1°
k;i
. Return t el relo

I -1t 0
loghr® . 1c® 1091 K 1c® o ¢ E;’it

T
= o

parameters for the compensating weights that exactly match the probabilities in Equation 2 and
hence guarantee exact marginal recovery [14]. The next theorem better formalizes it.

Theorem 4.3. Suppose that a relaxed modef®; W "'° and a remaining modél ®™; W "®M° gre
obtained by relaxing a single equivalence constrat= X°° from an augmented modef“9, and
that the prlmal graph of "' is split into two disconnected components by the relaxationt’ Let A
fork = 1;:::;K be theK pairs of compensating literals introduced, angi; £ ki fork =1 :::;K, be

the parameters attached to the compensating weights. Then Equation 2 holds when the compensating
weight parameters satisfy the following equalities.

cloglike e o sjog K k=1 3)
ki — 91 co ki ki ~ gl . k;i = L0
where 6 5
r"—W'vII1 8 \k;if"' W = Pr w®i«° =Pr 5% fork=1::::K:
= WML rem = \k;i kI,Wremo ’ k — rel” i'ks ke — rel e - 4...,KN.
(4)

Theorem 4.3 suggests an iterative optimization scheme to nd the xed point solutions for all
the compensating parameters introduced to compensate multiple relaxed equivalence constraints.

Speci cally, starting from a random initialization of the parameters of the compensating w8ights,

each iteratiort + 1, we can update each paramet%r”1

0
c;1t+1° K cOuto,
Ki loghr™ k. 1 logtl g 1ce® oo ki (5)

where is a permutation over the copies and eagh:co is computed as the probability qﬁco
according to the relaxed model.

Therefore, at each iteratidnwe need to solveK integration problems for computing thk terms
andC; K integrations folPr ", o for each pair of variable and its copies. While in principle

we could use any exact WMI solver to solve these problems, we adopt MP-Wa/bh¢cause it is

the fastest solver yet for tree-shaped and bounded diameter problems, and even more importantly, it
allows toamortize inference across queri€ghat is, we can compute all tlig K literal probabilities

in a single message-passing step with it.

From this perspectivdReColngenerates a sequence of induced distribut@ﬁg,; o ;Prlzrz,; Prlt;,

that should converge to a xed-point distribution. In practice to check for convergence, one can
monitor the quality of the literal probability approximations and stop when a threshislohet before

JFollowing Choi and Darwiche [16], we initialize all parameters to 1.



Figure 1: Average integrated absolute errors (left) and times in seconds (right) for 5 problems of
increasing sizen x-axis) forReColnand competitors. Number of compensating literals (2-4) or
samples used are in parentheses. Mean values per problem size are connected by a line.

a certain number of iterations are done. We choose the threshold to be the malxithumrm of
compensation literal probability di erences. To ease convergence, we dppipeningthat is, we

smooth each parameter update at iteratiehby afactor > 0: ¢ 11 o StHFL e
This completes the steps in oReColnsolver. Algorithm 1 recaps them.

5 Related Work

The RCR framework has been particularized for approximating margibd|d.§, 18], partition
functions [L7], and for maximization15] or lifted inference scenario87], but always for discrete
variables.ReColnis the rst extension to hybrid domains with SMORA ) algebraic constraints.

Among the exact WMI solvers, the majority ignores the problem structure to be as general-purpose as
possible 8, 34, 35, 29]. However, by doing so they are unable to scale beyond tens of variables in
practice. Conversely, recent e cient alternatives such as SM] And MP-WMI [42] can greatly

scale but only on WMI problems amenable to tractable inference (cf. Section 3). We leverage the
strengths of the latter to e ciently solve iterative integration problem&eColn.

So far, most approximate WMI solvers rely on sampling, and as such inherit all the classical issues
of Monte Carlo approaches like poor scalability and converget@e Among these, SAMPO43]
employs Gibbs sampling but does not support generic polynomial weights. A very recent alternative
is a fully polynomial randomized approximation schertip However, it can only operate on DNF

SMT formulas, and it is not applicable to our CNF representation as a conversion into DNF can blow
up the problem size. Other MCMC variant P, 4] operating with algebraic constraints, while
more e ective, cannot be readily used for WMI inference problems. The only alternative to sampling
schemes is the hashing-based WMI algoritl®inyhich is known to perform poorly on non-trivial
problems due the hardness of calibratingtitig10].

In the next section we compare against the fastest baseline available, the rejection sampler implemented
in the pywmi library B0} and a more advanced variant of rejection sampling that greatly increases the
acceptance rate of the rejection sampler by compiling an SMT formula into an XSDD strutfure [

6 Experiments

We aim to answer the following question®)1) how fast and scalable ReColn?, (Q2) how accurate
are its approximations?Q3) what is the e ect of increasing the number of compensating litekals

We generate WMI problems whose primal graphs are random Watts-Strogatz g8aphsth
increasing size = 1;:::;11, with two additional neighbor connections and probability of rewiring

0:5, to which we attach randomly generated clauses of length 2 and piecewise constant densities. For
each setting we genergiéndependent problems.

We runReColnfor up to 20 iterations, employing a dampening coe cient 0:5 in two settings
that di er by the number of compensating literdts = 2;4. We compare it against the fastest
sampling scheme available, the rejection sampler (REJ) implementad iar{d the hybrid solver
XSDD(Sampling) #4] that employs sophisticated knowledge-compilatiaf] techniques 29] to
guide sampling. For both REJ and XSDD we empl@®@thousand samples per query.
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