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Abstract

Weightedmodel integration (WMI) is a framework to perform advanced probabilistic
inference in hybrid domains, i.e., on distributions over mixed continuous-discrete
random variables and in the presence of complex logical and arithmetic constraints.
In this work, we advance theWMI framework on both the theoretical and algorithmic
side. First, we trace the boundaries of tractability for WMI inference in terms of two
key properties of a WMI problem’s dependency structure: sparsity and diameter.
We prove that exact inference is only efficient if that structure is tree-shaped with
logarithmic diameter. While this result deepens our theoretical understanding of
WMI it hinders the practical applicability of exact WMI solvers to large problems.
To overcome this, we propose the first approximate WMI solver that does not resort
to sampling, but performs exact inference on an approximate model. Our solution
iteratively performs message passing in a relaxed problem structure to recover lost
dependencies. As our experiments show, it scales to problems that are out of the
reach of exact WMI solvers while delivering accurate approximations.

1 Introduction

Consider an autonomous agent operating under uncertainty in a real-world scenario, for instance a
self-driving vehicle. It has to model both continuous variables like the speed and position of other
cars and discrete ones like the color of traffic lights and the number of pedestrians. Moreover, in
order to make decisions, it needs to perform advanced probabilistic reasoning. For example, it has to
reason about physical constraints while computing the probability of a grounded scene described via
complex algebraic constraints, such as the geometry of vehicles and the roads ahead.
Performing probabilistic inference in these constrained and hybrid (mixed continuous-discrete)
scenarios goes beyond the limited inference capabilities of intractable probabilistic models such
as variational autoencoders [28] and generative adversarial networks [25]. This is also the case
for classical probabilistic graphical models for hybrid domains [27, 32] and more recent tractable
alternatives [33, 38, 40] which struggle to either perform inference over complex algebraic constraints
or make too simplistic representational or distributional assumptions.
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On the other hand, Weighted Model Integration (WMI) [8, 34] is a modeling and inference framework
that supports general hybrid probabilistic reasoning over algebraic constraints, by design. Indeed, in
the WMI framework, mixed complex continuous-discrete interactions can be easily expressed in the
language of Satisfiability Modulo Theories (SMT) [7] and answering probabilistic queries involving
algebraic constraints can be naturally cast as integration of certain weight functions over the regions
that satisfy those constraints.
In this paper we advance the WMI framework on two fronts. First, we deepen the theoretical
understanding of the complexity of WMI inference on real-world problems by proving hardness
results. Second, we deliver an efficient and accurate approximateWMI solver as a practical algorithmic
solution to deploy WMI inference at a larger scale.
Specifically, we study the dependency structure of WMI problems as specified by the primal graph of
their SMT formula [22]. We prove that performing exact inference is #P-hard if the primal graph
has a treewidth larger than one or a diameter that is linear in the number of variables. Second, to
overcome these negative results, we introduce ReCoIn , a practical algorithmic solution that extends
the relax-compensate-and-recover framework [14, 16, 17] for approximate discrete inference to hybrid
inference scenarios with algebraic constraints. As our experiments suggest ReCoIn candidates as the
best alternative, in terms of scalability and accuracy of the delivered approximations, in the current
panorama of general-purpose WMI solvers.
The rest of the paper is organized as follows. In Section 2 we introduce the notation and background
needed to later prove our theoretical results in Section 3 and to introduce ReCoIn in Section 4. Before
evaluating ReCoIn in Section 6 we discuss related work in Section 5.

2 Background

Notation. Uppercase letters denote random variables (X; B) and lowercase letters denote their
assignments (x; b). We use bold for sets of variables (X;B), and their joint assignments (x; b). We
use capital Greek letters for logical formulas (�;�). Literals are atomic formulas or their negation,
and are denoted using either ‘ or lowercase Greek letters (; �). We let x |= � denote the satisfaction
of a formula � by an assignment x. Its corresponding indicator function is nx |= �o.

Satisfiability Modulo Theories . To represent complex relationships between discrete and continu-
ous variables, we harness the language of Satisfiability Modulo Theories (SMT) [7] which generalizes
Boolean propositional logic [6]. Specifically, we use SMT over linear real arithmetic (LRA) which
has been used as an expressive modeling language for probabilistic programming [13], model checking
[23] and robotics [20]. As is common, we adopt quantifier-free SMT(LRA) formulas and we assume
them to be in conjunctive normal form (CNF), that is, a conjunction of clauses. For brevity, we will
refer to them as simply SMT formulas. To characterize the dependency structure of an SMT formula
we make us of its primal graph representation.
Definition 2.1. (Primal Graph) Let � be an SMT formula. Then its primal graph G� = (V; E) is the
undirected graph whose vertex setV is the set of variables in formula �, and whose edge set E has
edge X − Y iff variable X and variable Y appear together in one clause � ∈ �.
Example 2.2 (SMT formula and its primal graph). Consider the SMT formula � on the left over
continuous variables X;Y; Z and boolean variable B, its primal graph G� is shown on the right.

� =

(
(0 ≤ X ≤ 2) ∧ (1 ≤ Y ≤ 2) ∧ (0 ≤ Z ≤ 2)
(X ≥ 1) ∨ B
(X + Y ≤ 3) ∧ (X + Z ≥ 2) ∧ (Y + Z ≤ 3) B X Y

Z

Weighted Model Integration (WMI). Weighted Model Integration (WMI) [8, 34] is a framework
for probabilistic modeling and inference over mixed continuous-discrete distributions in presence of
algebraic constraints defined as SMT formulas. These representations are captured by WMI models.
Definition 2.3. (WMI model) Let X be a set of continuous random variables assuming values in R,
and B a set of Boolean random variables assuming values in B = {true; false}. A WMI model is a
pair (�;w), where � is an SMT formula over X and B, and w : (x;b) 7→ R+ is a positive function,
called the weight function.
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We consider classes of WMI problems whose weight function comes from a parametric function
family, denoted
 . Moreover, we adopt the common assumption of weight functionsw to be
de�ned as products of per-literal weights [8, 11, 41]. That is,w is de�nable via a set of functions
W = f w` ¹xºg̀ 2L , whereL are the literals in� . and where eachw` is de�ned over variables in
literal ` . Then, the weight of assignment¹x; bº is: w¹x; bº =

Î
` 2L w` ¹x; bºnx;b j=` o: Hence, we will

represent WMI models as pairs¹� ; Wº .
De�nition 2.4. (WMI task) Let¹� ; Wº be a WMI model over real variablesX and Boolean variables
B. TheWMI taskfor ¹� ; Wº is to compute

WMI¹� ; W ; X; Bº ,
Õ

b2BjBj

¹

¹x;bº j=�

Ö

` 2L
w` ¹x; bºnx;b j=` o dx: (1)

That is, the task is to sum over all possible Boolean assignmentsb 2 B jB j while integrating over the
weighted assignments ofX that satisfy the formula:¹x; bº j= � .

When all weightsw` ¹xº are constants and all variables continuous (B = ; ) we retrieve the model
integration (MI) task [41], whereas when all variables are Boolean (i.e.,X = ; ) WMI equals the
well-known weighted model counting (WMC) task [11]. In the general case, solvingWMI¹� ; W ; X; Bº
equals to computing the partition function of the unnormalized probability distribution induced by
weightsW on formula� and restricted to the regions where� is SAT.

As such, computing the probability of an event represented as an SMT formula� involving algebraic
constraints w.r.t. the distribution induced byW on � can be done by computing the WMI of the
conjunction of formula� and formula� , normalized by the partition function:

Pr� ¹� º = WMI¹� ^ � ; W ; X; Bº • WMI¹� ; W ; X; Bº:

Example 2.5 (Advanced probabilistic inference with WMI). Consider the SMT formula� in
Example 2.2 with per-literal weightsW = f w`1¹Bº := 2; w`2¹xº := x2; w`3¹y; zº := 2yzg where
`1 := B, `2 := x � 1, `3 := y + z � 3 and all the weights associated to other literals are constantly 1.
Then the WMI of formula� evaluates to:

WMI¹� ; W ; X; Bº =
¹ 2

1
dx

¹ � x+3

1
dy

¹ � y+3

� x+2
x2 � ¹2 + 1º � ¹x + yº � 2yz dz=

11173
480

:

Moreover, for the two formulas� c = ¹B = trueº and� 1 = 0 � z � 1, then

Pr� ¹� 1j� cº = WMI¹� ^ � c ^ � 1; W ; X; Bº • WMI¹� ^ � c; W ; X; Bº = 18936• 78211� 0:242:

From here on, w.l.o.g. we will assume WMI problems to be de�ned on continuous variables only.
We leverage the polytime reduction introduced in Zeng and Van den Broeck[41] to map a WMI
problem¹� ; Wº over continuous and Boolean variablesX andB to a new WMI problem¹� 0; W 0º
over continuous variablesX0 only. This is done by properly introducing auxiliary variables inX0 to
account forB. The resulting primal graphG� 0 is isomorphic toG� . For instance, we can replaceB in
Example 2.5 by a real variableTB having values in»� 1; 1¼without changing the WMI task nor the
treewidth or the diameter of the primal graph (cf. Appendix A).

3 On the hardness of WMI

While the general formulation of WMI we have provided in the previous section is elegant and
appealing for advanced probabilistic reasoning, it is, however, not practical in general. In fact, it
requires solving an arbitrarily complex integral, which is a #P-hard problem [5].

To �ll this gap, recent works have started looking forclasses of tractable WMI problems, i.e., problems
for which a solution can be computed exactly in polytime [41, 42]. These classes of problems can be
characterized by two parameters: thetreewidthand thediameterof the primal graph of the SMT
formulas considered, where the latter is generally expressed as a function of the number of variables
in the problem. Note that this is strikingly di�erent from classical discrete probabilistic graphical
models, where most of the complexity results are stated in terms of the treewidth alone [31, 36].
De�nition 3.1. (WMI ¹
 ; �; tº Problem Class) LetWMI ¹
 ; �; tº be the class of WMI problems over
models of the form¹� ; Wº on real domains, having primal graphG� with diameter of� ¹� ¹nºº and
treewidtht, wheren is the number of variables in the formula� ; and having per-literal weightsW in
a function family
 .
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The largest tractable WMI class known so far has been introduced in Zeng et al.[42] as
WMI ¹
 ; log¹nº; 1º, i.e., the class of problems overn real variables whose primal graph is tree-
shaped (treewidth1) and has diameter of length logarithmic inn, and whose weight functions belong
to a function family
 satisfying some conditions calledtractable weight conditions(TWCs).

De�nition 3.2. (TWCs) Given a parametric weight function family
 , it satis�es the TWCs i�

i) it is closed under product, i.e.,8 f ; g 2 
 , f � g 2 
 ;
ii) it is closed under de�nite integration, i.e.,8 f 2 
 ; F¹u¹xºº � F¹l ¹xºº 2 
 whereF is the

antiderivative off , andl ¹xº; u¹xº are SMT(LRA ) integration bounds for anyx 2 X;
iii) the symbolic antiderivative of anyf 2 
 can be tractably computed by symbolic integration.

Examples of weight functions in family
 include the largely adopted family of (piecewise)
polynomials [8], the family of exponentiated linear functions and the family of their products. In the
following analysis, we will restrict our attention to weight function families satisfying the TWCs.

In Zeng et al.[42] the tractability of problem classWMI ¹
 ; log¹nº; 1º is demonstrated by construction,
where they introduce a message passing scheme, named MP-WMI, that runs in polytime on tree-shaped
and diameter-bounded primal graphs. That is, somesu�cient conditions for tractable WMI classes are
provided. Here we provide a �ner charting of the �tractable islands� of WMI problems by questioning
the necessity of the above conditions while looking for larger tractable classes. We prove that unless
P = NP, larger classes are not tractable. We begin by proving that increasing the diameter of a
tree-shaped problem structure makes it hard.

Theorem 3.3. Let WMI ¹
 ; n; 1º be the class of WMI problems whose weight function family

satis�es the TWCs. Then inference inWMI ¹
 ; n; 1º is #P-hard.

Sketch of proof.We build a polytime reduction from a #P-complete variant of the subset sum
problem [24, 12, 26] to a WMI problem with constant weights and whose primal graphG� is a chain
with diameter exactlyn. A complete proof is in Appendix B. �

Next, we turn our attention to another class of WMI problems, the classWMI ¹
 ; log¹nº; 2º, having
logarithmic diameter but treewidth 2. This class is also supposed to be �easy� in the sense that it extends
the tractable classWMI ¹
 ; log¹nº; 1º by slightly increasing the treewidth by one. Unfortunately,
inference inWMI ¹
 ; log¹nº; 2º is also hard.

Theorem 3.4. LetWMI ¹
 ; log¹nº; 2º be the class of WMI problems whose parametric weight function
family 
 satis�es the TWCs. Then inference inWMI ¹
 ; log¹nº; 2º is #P-hard.

Sketch of proof.Analogously to Theorem 3.3, we prove it by constructing a polytime reduction from
a #P-complete variant of the subset sum problem to aMI problem whose primal graph has treewidth
two but diameter being at mostlog¹nº. A complete proof is provided in Appendix B. �

Note that our result di�ers from the one presented in [42] for the hardness of the class2WMI¹
 º,
containing WMI problems with SMT formulas being conjunctions of clauses comprising at most
two variables. In fact,WMI ¹
 ; log¹nº; 2º is contained in2WMI¹
 º. As such, we trace the tractablity
boundaries of WMI inference with higher precision, as the next corollary states. Its proof follows
from Theorems 3.3 and 3.4 and from the su�ciency as demonstrated in Zeng et al. [42].

Corollary 3.5. Let WMI ¹
 ; log¹nº; tº be the class of WMI problems whose parametric weight
function family
 satis�es the TWCs. ThenWMI ¹
 ; log¹nº; tº is a tractable WMI class for inference
if-and-only-if treewidtht = 1.

These complexity results set the standard for the solver complexity: every exact WMI solver that aims
to be e�cient, needs to operate in the regime of Corollary 3.5. However, real-world problems do not
always conform to the structural desiderata for primal graphs stated in it. This implies that e�cient
approximations might not only be useful in these scenarios, butneeded. In the next section we �ll
this gap, by introducing our approximate WMI solver that navigates the tractable islands in WMI
problems by performing e�cient inference on a relaxed version of intractable WMI problems.
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4 ReCoIn : Relax, compensate and then integrate

Our algorithm to approximate WMI inference comprises three phases: i)RElaxingan intractable
WMI model into a simpler one amenable to exact inference by removing dependencies from it; then
ii) introduce certain literals and weights toCOmpensatefor the dependency structure lost in this way
and iii) optimize them by solving a series of exactINtegrationproblems. We name itReCoIn. With
ReCoInwe can navigatea spectrum of approximations� with the original primal graph G� on one
end, and a fully disconnected version on the other � by removing more and more edges. As such,
ReCoIncan be viewed as extending therelax-compensate-recover(RCR) framework [14, 16, 17] for
approximate inference on discrete probabilistic models to continuous representations and in presence
of algebraic constraints.

4.1 Relaxation: introducing and then �breaking� equivalence constraints

The aim of the relaxation step is to obtain a new SMT formula� rel such that its associated primal
graphG� rel , serves as the simpli�cation of the originalG� by removing a given set of edges. We will
show that the removal of any edge can be formulated as the removal of an equivalence edge [17].
This process consists of two steps. First, we create anaugmented formula� aug by introducing
new variables to� and enforcing them to act ascopiesof certain original variables by explicitly
addingequivalence constraints. Second, we deliver the relaxedG� rel by removing these equivalence
constraints.

Augmentation. The detailed process of distilling a new augmented model¹� aug; W augº from
¹� ; Wº , given a subset of edgesEd � E in G� to remove, is listed in Algorithm 2 in Appendix C.
At its core, there are routines for copying one variable and adding the corresponding equivalence
constraints and compensating literals. For each edgeXi � Xj 2 Ed to be removed, one of its variables
is arbitrarily selected, sayXi . Then a variableXc

i , as a copy of the chosenXi , is introduced in� aug as
well as one equivalence constraint between the two as the literal^̀: ¹Xc

i = Xi º with associated weight
function� ¹Xi ; Xc

i º where� is the Dirac delta function. Then we properly rename all occurrences ofXi
by Xc

i in the literals appearing in the clauses of� aug that also containXj and introduce copied literals
for the univariate clauses overXi only. These steps cause the primal graphG� aug to now contain the
dependencyXi � Xc

i � Xj but notXi � Xj .

Note that the augmented WMI model¹� aug; W augº now contains more variables than the original
one. Speci�cally, for each variableXi 2 G� we might have introducedCi di�erent copies inG� aug ,
denoted asX1

i ; : : : ;XC i
i , if we removedCi edges overXi . We will denote the originalXi asX0

i for
notation consistency. Even if the dimensionality of the augmented WMI problem is increased by
augmentation, the next propositions are guaranteeing that we are not altering the partition function
and the marginal distributions ofPr� , and that introducing equivalence constraints does not alter the
induced distribution.

Proposition 4.1. Let � be an SMT formula with primal graphG� and per-literal weight functions
W , and let� aug andW aug be the output of Algorithm 2 when applied to� andG� given a certain
subset of edges inG� . Then it holds thatWMI¹� ; Wº = WMI¹� aug; W augº. Moreover, for anyXi in
G� and univariate literal̀ overXi , it holds thatPr� ¹` º = Pr� aug ¹` º.

Removing equivalence constraints. Given an augmented model¹� aug; W augº, we remove equiv-
alence constraints introduced at the augmentation step to obtain the relaxed model¹� rel; W relº. As a
result, each original variable inG� rel will be detached from its copies, thus ignoring the dependencies
encoded by the edgesEd that were marked to be removed. Algorithm 3 details this procedure. Note
that relaxation �breaks� the augmented formula� aug into a relaxed part� rel and a �remaining part�
� rem, which contains the equivalence constraints just removed.

Example 4.2. Consider the WMI model¹� ; Wº of Example 2.2. Its augmented formula� aug obtained
by applying Algorithm 2 for edgesEd = f X � Zg to be removed (orange), and its relaxed formula
� rel and remaining formula� rem obtained by Algorithm 3 have their primal graphs shown on the left,
center and right below respectively. The detailed WMI models for each are shown in Appendix A.

Which edges to relax? After relaxing enough constraints, we can obtain a WMI problem amenable
to exact inference, for example, one whose primal graphG� rel has treewidth one and logarithmic
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Z1 Z0

B X Y

Z1 Z0

Z1 Z0

diameter. Running an exactWMI solver on such a problem would already deliver a cheap way
to perform approximate inference. However, the quality of such an approximation can be greatly
improved if we compensate for the relaxed constraints. We will discuss this in the next section.

A question remains:how to select the set of edgesEd to relax? Note that the more edges we remove
from � , the easier it is to perform inference on� rel given fewer dependencies, but the lower the
approximation quality, and the harder to compensate for them all, since it would di�er from the
augmented model more, and meanwhile from the original model as Proposition 4.1 indicates. For
example, removing all edges inG� will yield a fully disconnectedG� rel where performing exact
inference on each component is going to be embarrassingly parallelizable. This would correpond
to perform a loopy version of the MP-WMI algorithm. Analogous to its discrete counterpart, loopy
belief propagation, it would be susceptible to poor converge rates [31, 14]. Therefore we propose
a simple strategy for selecting the edges to be removed, which is to retrieve a spanning tree of the
original primal graph. In Section 6 we demonstrate its practical e�ectiveness on a range of inference
problems of increasing complexity. Devising and evaluating alternative relaxing strategies is an
interesting topic for future work.

4.2 Compensation

The aim of the compensation phase is to recover the relaxed equivalence constraints and hence, make
the distributionPr� rel better approximatePr� aug and thus better approximatePr� as Proposition 4.1
suggests. In order to do so, we introduce new literals, namedcompensating literals, to the variables
and their copies in the relaxed formula� rel and equip them with parameterized weights, named
compensating weights, and further we optimize them in order to synchronize the variable marginals
among a copied variable and its copies.

For each variableXi = X0
i and itsCi copiesX1

i ; : : : ;XC i
i in formula � rel, we generateK di�erent

univariate literals of the form̀c
i;k : ¹X¹cº

i � � i;k � � i;kº for k = 1; : : : ;K andc = 0; 1; : : : ;Ci where
each� i;k and� i;k are respectively drawn at uniform fromf +1; � 1gand the support ofXi as encoded in
� rel

i . Note that the� i;k; � i;k aresharedacross all the copies. Algorithm 4 in Appendix C summarizes
this procedure. Each compensating literal` c

i;k is therefore responsible for a portion of the support of
the marginal distribution ofXc

i , and also for the (unnormalized) marginal density ofXc
i by equipping

it with a parameterized weightw` c
i ; k

.

To retain tractable inference, the parametric function family chosen for eachw` c
i ; k

should satisfy the
TWCs as discussed in section 3. Striving for simplicity, we employ constant weights of the form
w` c

i ; k
:= exp¹� c

i;kº. Therefore, our induced marginal density takes the form of a piecewise constant
approximation. As such, by increasing the number of compensating literalsK one could obtain a �ner
approximation, however at the price of introducing more parameters to optimize for. We empirically
investigate the e�ect of increasingK in our experiments in section 6.

4.3 Iterative integration

Instead of matching marginal density functions we settle for the weaker condition ofmatching the
marginal probabilities of the newly introduced compensating literals. This in turn can be stated by
the following set of equivalence constraints for each variableXi :

Pr� rem
� Û C i

c=0
` c
k;i

�
= Pr� rel

�
`0
k;i

�
= Pr� rel

�
`1
k;i

�
= � � � = Pr� rel

�
`C i
k;i

�
; for k = 1; � � � ; K: (2)

where the �rst termPr� rem
� ÓC i

j =0 ` c
k;i

�
is the probability of the compensating literals in the remaining

WMI model ¹� rem; W remº andPr� rel

�
` c
k;i

�
are the probabilities of compensating literals in the relaxed

formula� rel. Intuitively, for a single equivalence constraint that has been relaxed, there exists a set of
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Algorithm 1 ReCoIn(� ; W ; K)
Input: a WMI model¹� ; Wº , K number of compensating literals
Output: ¹� rel; W relº: a relaxed and compensated WMI model
1: Ed  initStrategy¹� ; Wº . Select edges to remove
2: � aug; W aug; L  augmentModel¹� ; W ; Edº
3: ¹� rel; W relº; ¹� rem; W remº  relaxModel¹� aug; W aug; Lº
4: � rel; W rel  addingCompensations¹� rel; W rel; L ; Kº
5: while not convergeddo
6: for Xi 2 copiedNodes¹� relº do
7: for k = 1; : : : ;K do
8: r k  WMI¹� rem; W remº • WMI¹� rem ^

ÓC i
c=0 ` c

k;i ; W remº � 1
9: for c = 0; 1; : : : ;Ci do

10: � c;¹t+1º
k;i  log¹r k � k;� ¹cºº � log¹1 � � k;� ¹cºº �

Í
c0, c � c;¹t º

k;i

11: Return ¹� rel; W relº

parameters� for the compensating weights that exactly match the probabilities in Equation 2 and
hence guarantee exact marginal recovery [14]. The next theorem better formalizes it.

Theorem 4.3. Suppose that a relaxed model¹� rel; W relº and a remaining model¹� rem; W remº are
obtained by relaxing a single equivalence constraint¹Xi = Xc

i º from an augmented model� aug, and
that the primal graph of� rel is split into two disconnected components by the relaxation. Let¹` i;k; `c

i;kº
for k = 1; : : : ;K be theK pairs of compensating literals introduced, and� k;i ; � c

k;i , for k = 1; : : : ;K, be
the parameters attached to the compensating weights. Then Equation 2 holds when the compensating
weight parameters satisfy the following equalities.

� k;i = log
r k � k;c

1 � � k;c
� � c

k;i ; � c
k;i = log

r k � k

1 � � k
� � k;i for k = 1; : : : ;K (3)

where

r k =
WMI¹� rem Ó

: `k;i
Ó

: ` c
k;i ; W remº

WMI¹� rem Ó
`k;i

Ó
` c
k;i ; W remº

; � k = Pr� rel ¹` i;kº; � k;c = Pr� rel¹` c
i;kº; for k = 1; : : : ;K:

(4)

Theorem 4.3 suggests an iterative optimization scheme to �nd the �xed point solutions for all
the compensating parameters introduced to compensate multiple relaxed equivalence constraints.
Speci�cally, starting from a random initialization of the parameters of the compensating weights,3at
each iterationt + 1, we can update each parameter� c;¹t+1º

k;i as

� c;¹t+1º
k;i  log¹r k � k;� ¹cºº � log¹1 � � k;� ¹cºº �

Õ

c0, c
� c0;¹t º

k;i ; (5)

where� is a permutation over the copies and each� k;� ¹cº is computed as the probability of` � ¹cº
k;i

according to the relaxed model.

Therefore, at each iterationt, we need to solve2K integration problems for computing ther k terms
andCi � K integrations forPr� rel ¹` � ¹cº

k;i º for each pair of variable and its copies. While in principle
we could use any exact WMI solver to solve these problems, we adopt MP-WMI [42] because it is
the fastest solver yet for tree-shaped and bounded diameter problems, and even more importantly, it
allows toamortize inference across queries. That is, we can compute all theCi � K literal probabilities
in a single message-passing step with it.

From this perspective,ReCoIngenerates a sequence of induced distributionsPr¹1º
� rel; : : : ;Pr¹2º

� rel; Pr¹t º
� rel ,

that should converge to a �xed-point distribution. In practice to check for convergence, one can
monitor the quality of the literal probability approximations and stop when a threshold� is met before

3Following Choi and Darwiche [16], we initialize all parameters to 1.
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Figure 1: Average integrated absolute errors (left) and times in seconds (right) for 5 problems of
increasing size (n, x-axis) forReCoInand competitors. Number of compensating literals (2-4) or
samples used are in parentheses. Mean values per problem size are connected by a line.

a certain number of iterations are done. We choose the threshold to be the maximumL-1 norm of
compensation literal probability di�erences. To ease convergence, we applydampening, that is, we
smooth each parameter update at iterationt+1by a factor� > 0: � c;¹t+1º

k;i  ¹ 1� � º�� c;¹t+1º
k;i +� �� c;¹t+1º

k;i :
This completes the steps in ourReCoInsolver. Algorithm 1 recaps them.

5 Related Work

The RCR framework has been particularized for approximating marginals [14, 16, 18], partition
functions [17], and for maximization [15] or lifted inference scenarios [37], but always for discrete
variables.ReCoIn is the �rst extension to hybrid domains with SMT(LRA ) algebraic constraints.

Among the exact WMI solvers, the majority ignores the problem structure to be as general-purpose as
possible [8, 34, 35, 29]. However, by doing so they are unable to scale beyond tens of variables in
practice. Conversely, recent e�cient alternatives such as SMI [41] and MP-WMI [42] can greatly
scale but only on WMI problems amenable to tractable inference (cf. Section 3). We leverage the
strengths of the latter to e�ciently solve iterative integration problems inReCoIn.

So far, most approximate WMI solvers rely on sampling, and as such inherit all the classical issues
of Monte Carlo approaches like poor scalability and convergence [19]. Among these, SAMPO [43]
employs Gibbs sampling but does not support generic polynomial weights. A very recent alternative
is a fully polynomial randomized approximation scheme [1]. However, it can only operate on DNF
SMT formulas, and it is not applicable to our CNF representation as a conversion into DNF can blow
up the problem size. Other MCMC variants [3, 2, 4] operating with algebraic constraints, while
more e�ective, cannot be readily used for WMI inference problems. The only alternative to sampling
schemes is the hashing-based WMI algorithm [9] which is known to perform poorly on non-trivial
problems due the hardness of calibrating thetilt [10].

In the next section we compare against the fastest baseline available, the rejection sampler implemented
in the pywmi library [30] and a more advanced variant of rejection sampling that greatly increases the
acceptance rate of the rejection sampler by compiling an SMT formula into an XSDD structure [44].

6 Experiments

We aim to answer the following questions:(Q1) how fast and scalable isReCoIn?,(Q2) how accurate
are its approximations?,(Q3) what is the e�ect of increasing the number of compensating literalsK?

We generate WMI problems whose primal graphs are random Watts-Strogatz graphs [39] with
increasing sizen = 1; : : : ;11, with two additional neighbor connections and probability of rewiring
0:5, to which we attach randomly generated clauses of length 2 and piecewise constant densities. For
each setting we generate5 independent problems.

We runReCoInfor up to 20 iterations, employing a dampening coe�cient� = 0:5 in two settings
that di�er by the number of compensating literalsK = 2; 4. We compare it against the fastest
sampling scheme available, the rejection sampler (REJ) implemented in [30] and the hybrid solver
XSDD(Sampling) [44] that employs sophisticated knowledge-compilation [21] techniques [29] to
guide sampling. For both REJ and XSDD we employ100thousand samples per query.
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