SIMPLE: A Gradient Estimator for k-Subset Sampling

Abstract

k-subset sampling is ubiquitous in machine learning, enabling regularization and interpretability through sparsity. The challenge lies in rendering k-subset sampling amenable to end-to-end learning. This has typically involved relaxing the reparameterized samples to allow for backpropagation, with the risk of introducing high bias and high variance. In this work, we fall back to discrete k-subset sampling on the forward pass. This is coupled with using the gradient with respect to the exact marginals, computed efficiently, as a proxy for the true gradient. We show that our gradient estimator, SIMPLE, exhibits lower bias and variance compared to state-of-the-art estimators, including the straight-through Gumbel estimator when k=1. Empirical results show improved performance on learning to explain and sparse linear regression. We provide an algorithm for computing the exact ELBO for the k-subset distribution, obtaining significantly lower loss compared to SOTA.

Zhe Zeng
Zhe Zeng
Assistant Professor

I do research in probabilistic ML and neurosymbolic AI to enable and support decision-making in the real world in the presence of probabilistic uncertainty and symbolic knowledge, where the symbolic knowledge can be graph structures and logical, arithmetic, and physical constraints.