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Computation of Expected Kernels is omnipresent in kernel-based frameworks.
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Examples
= Squared MMD

px ~p KX+ Ey oy g KX XD ] = 2y ) 7 oo [k (X, X7)]
= Kernelized Discrete Stein Discrepancy
Ex~gx'~q [kp (x, x’)]
= Support Vector Regression for Missing Data
Ex-p |Ziwik(xY, x) + b]

Probabilistic Circuits Recursive Computation of Expected Kernels

and Kernel Circuits

[Sum nodes] [Product nodes]
We consider the circuit representation: p(X) = Z,w;p; (X),g(X") = Zjo'CIj(X') p(X) = I;p;(X;), q(X") = ;q;(X})
L,(p(n))  ifnisaninput unit k(X X') = Zw; k(X X') (X, X") = Ik (X3, X))
fuX) =1 Heeineyfc(X)  if nis a product unit My (p, @) = i juawiw;wi My, (01, ) My (p, q) = ;M. (P, G:)
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For probabilistic circuits (PC):
" A PCondomain X is a circuit encoding a non-
negative function p: ¥ - R=Y.

For kernel circuits (KC):

= A KCon domain X X X is a circuit encoding a The expected kernels are computed exactly in O(|pllql|k]|).
symmetric kernel function k: X X X - R™.

Structured properties for tractable computation: SVR With Missing Data
= Decomposable

all inputs of product units depend on disjoint sets of Given an SVR predictive model f with partial evidence xg,

variables
= Smooth
all inputs of sum units depend on the same variable sets
= Compatible
KCs and PCs are smooth and decompose in the same we want to compute:
way IE':xc~p(Xc|xs) [f(xs: Xc)] — 2:iWiIExc~p(Xc|xg) [k(X, X(i))] +b
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We consider expressive models represented as
probabilistic circuits [1]:
= p and q are decomposable and smooth probabilistic

clrcutts =—> proved #P-Hard! @
= p and q are compatible probabilistic circuits Collapsed Black-box importance sampling (CBBIS) is a collapsed variant of BBIS [2], which
=> proved #P-Hard! () minimizes the conditional Kernelized Discrete Stein Discrepancy:
= p and q are compatible probabilistic circuits, k is a Ss(qsllp) = Ex_ x'~q.x) [Exc~p(xc|xs), K~ pX x| Kp (X, X')]]

kernel circuit compatible with p and q
=—> polytime algorithm! @
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