Probabilistic Inference with Algebraic Constraints:

Theoretical Limits and Practical Approximations

December - NeurIPS 2020 Spotlight

TL;DR: Hybrid probabilistic inference with constraints is HARD. Efficient approximate inference is necessary!

How to model Discrete + Continuous + Constraints?

Satisfiability Modulo Theories (SMT)

SMT of linear real arithmetic as representation language

To further make an SMT formula probabilistic ...

SMT + weights = Weighted Model Integration (WMI)

Definition (WMI). Given an SMT formula Δ over continuous variables Xand discrete variables B, and weight function \mathcal{W} , the weighted model integration (WMI) is

$$\mathsf{WMI}(\Delta, \mathcal{W}; \mathbf{X}, \mathbf{B}) \triangleq \sum_{\boldsymbol{b} \in \mathbb{B}^{|\mathbf{B}|}} \int_{(\mathbf{x}, \boldsymbol{b}) \models \Delta} w(\mathbf{x}, \boldsymbol{b}) \, d\mathbf{x}.$$

Example. Given a query:

What is the probability of team T1 outperforming team T2, if T1 is a squad but T2 is not?

We can answer it by WMI:

$$\Phi_S: (B_{S_1}=1 \wedge B_{S_2}=0) \implies T_1 \text{ is a squad}, \ T_2 \text{ is not}$$
 $\Phi_T: (X_{T_1}>X_{T_2}) \implies T_1 \text{ outperforms } T_2$

$$\mathsf{Pr}_{\Delta}(\Phi_T \mid \Phi_S) = \frac{\mathsf{WMI}(\Delta \wedge \Phi_T \wedge \Phi_S, \mathcal{W})}{\mathsf{WMI}(\Delta \wedge \Phi_S, \mathcal{W})} = \frac{4,206}{7,225} \approx 58.22\%$$

How hard is *inference*?

Discrete cases vs. Hybrid cases

We explore the *tractability* of WMI problems by looking at the *primal graphs* for SMT formulas.

Example (primal graph).

 $(X_1 < X_2 + 1.1 \lor X_1 > X_2 - 0.1)$ SMT formula

Hardness from the number of constraints:

Hardness from integration pieces not bounded by graph diameter:

- => WMI Inference on tree-shaped primal graphs with unbounded-diameter is #P-hard!
- Hardness from loopy structures:
- => WMI inference on primal graphs with bounded-diameter but treewidth two is #P-hard!

Summary

- #P-hard in general
- Tree problem class: intractable
- Logarithmic diameter and treewidth two: intractable
- Intersection: tractable [1]

Paolo Morettin*2 Fanqi Yan*3 Zhe Zeng*1 Antonio Vergari¹ Guy Van den Broeck¹

¹University of California, Los Angeles

²KU Leuven

How to perform approximations?

ReCoin: Relax, Compensate, and Integrate

³University of Texas at Austin

Given a WMI problem with loopy primal graph, ReCoIn breaks loops by:

Further, ReColn compensate for the removed dependencies by:

Experiments

Code Available at: github.com/UCLA-StarAl/recoin

